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separately measured > > though their evaluation 
requires a more complicated mathematical t rea t -
ment, especially when t is longer than the short-
est delayed-neutron lifetime. 

011 < 1 

Equation (1) may be written as follows: 
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We find the third zone the most interesting and 
have focused our study there. Limiting the expan-
sion to a certain value of n, one introduces a 
positive or negative e r ro r depending upon the 
parity of n. However it is not worthwhile to 
choose high values for n, remembering that the 
following expression 
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Experimental conditions are based on an ap-
proximate evaluation of r0 and Q. 

Then the requirement that 

c = fet 

(where / is the number of fissions per unit time) 
has a numerical value with statistical meaning 
must be satisfied. 

This value could be in the range 10 to 100 and 
still gives information on variance parameters. 

Remembering that 
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(where Rj is the residue, F is the number of 
measurements, n - 1 is the number of parame-
ters) must be minimized. 

We have obtained good results for n - 4. 
The method is successful because of its s im-

plicity and ease of experimental application. Some 
advantages are: 

1) With small at1s a prompt-reactor analysis 
is really performed, for the condition \a2\t«at <1 
conforms to Eq. (3), which ignores the presence of 
delayed neutrons. 

2) Rossi alpha measurements are made in a 
region where V is varying rapidly with at; in 
fact 

y(t = 0) = a/2. 

3) Treatment of the data is easier than for a 
larger range of at, but sufficient to get a and 
Y^ with the required accuracy. 

4) The total time of the measurement is really 
much shorter than with any other method; in this 
way the results are less affected by dr if ts in reac-
tor power (especially when the reactor is kept 
critical). In fact, the condition at < 1 allows a 
maximum channel width 
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are the mean values, the absolute variance, the 
relative variance and their variances respectively, 
it may be seen that experimental values of the 
variance have the required significance when the 
number gates, N, is really high ( g 104) no 
matter if c is statistically small. 

This short t ime-variance method has been ap-
plied in measuring the prompt-neutron lifetime in 
the organic moderated ROSPO reactor at CSN 
Casaccia, CNEN. 

Measurements have been performed at a power 
level of 20 mW, giving satisfactory c values and 
requiring negligible corrections for counter dead 
time (» 2 jusec). 

Counts were taken with gate widths of 1 to 5 
msec using as a multiscaler a LABEN 512-channel 
analyzer controlled by an external pulse generator. 

The result thus obtained (r0 = 35 jusec) is in 
good agreement with ear l ier measurements and 
calculations. 
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Level Separation Corrections to 
Resonance Integrals 

Materials with complicated resonance s t ruc-
tures are almost always present in nuclear r e -
actors to such an extent that it is worthwhile to 
employ some analytic means for calculating reso-
nance escape probability. The treatments are 
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usually based on the Wigner formula1 for infinite 
homogeneous media, 

p = exp - (?/£), 

where £ is the mean lethargy gain per collision, 
and I is the resonance integral 

roo S A(E) dE 
i=Xoo Zt(E) E • (1) 

This equation is exact when hydrogen is the 
sole moderator. It is valid for other media only 
if all strongly absorbing resonances are very 
narrow and widely separated. A recent extension2 

allows widely separated resonances to be less 
narrow, and the procedure developed in this note 
allows narrow resonances to be less widely 
separated. Although the method steadily becomes 
more cumbersome as the resonance spacing de-
creases , many practical situations require only a 
f i r s t -o rde r correction to the Wigner formula, 
since it is usually adequate even by itself. 

Large level spacings are required by the 
Wigner formula for nonhydrogeneous moderators 
because the flux immediately above each reso-
nance is assumed to be of the form 1/E. However, 
when the spacings a re not very large, a resonance 
may lie in the midst of Placzek oscillations pro-
duced by other resonances at higher energies. 
Then there a r i se s the problem of determining: 
1) the rate at which a resonance in the Placzek 
oscillations absorbs neutrons, and 2) how this 
absorption affects the flux below the resonance. 
The second problem will be treated here simply 
by considering each resonance as a negative 
monoenergetic source equal to its absorption rate . 

Before the Wigner formula is generalized, 
however, the derivation of its original form should 
be made more cogent than the usual descriptions. 
Let q(E) be the slowing-down density at E and 
J(E)dE the rate at which all neutrons with ener-
gies above E a r e scattered into the infinitesimal 
interval dE just below E• From the relation 
J(E) = ZT<t>(E), one can eliminate the flux f rom 
the equation dq/dE = T,A<$>(E), divide through by q, 
and integrate to obtain 

J i l l - ( 2 > 
where w(E) = J(E)/q(E). 

When hydrogen is the only moderator, w(E) 
always equals 1 / E , for the probability that a 
neutron with any energy above E will scatter into 

l

S. GLASSTONE and M . C. E D L U N D , The Elements of 
Nuclear Reactor Theory, p. 166, D. Van Nostrand Co., 
Princeton, New Jersey, (1952). 

2

R. GOLDSTEIN and E. R. C O H E N , Nucl. Sci. Eng., 13, 
132, (1962). 

dE is rigorously dE/E t imes the probability that 
it will scatter below E. However, if other moder-
ators a re present, the ratio of probabilities de-
pends on the energy of the neutron before the 
collision, and therefore w(E) depends on the 
(unknown) flux above E. 

Iif order to avoid calculating this flux, w(E) is 
to be approximated, but in order to make the 
resul ts also practical, the expression for this 
ratio should be made: 1) exact for pure hydrogen, 
2) a simple function of E, and 3) accurate for 
narrow resonances. The f i r s t condition suggests 
that the approximation for w(E) be taken from an 
exact calculation based on a fictitious absorption 
c ross section, since such a result will always 
correctly degenerate to 1 /Ewhen the moderator 
is made pure hydrogen. The closer the fictitious 
c ross section is to the exact form, the better the 
approximation will be when other moderators are 
present. However, it is difficult to propose a 
realist ic form that always sat isf ies condition 2). 
A fur ther re t reat is called for, and condition 3) 
specifies the direction: find a simple fictitious 
absorption cross section that makes w(E) accurate 
at least for narrow resonances. The natural 
fictitious absorption c ross section to try is that 
for infinitely narrow resonances, namely zero. 
When the actual resonances a r e narrow, such 
an approximation for w(E) within them should be 
accurate because both its numerator J(E) and 
denominator q(E) are: 1) integrals over energy 
intervals presumably much larger than that in 
which the flux dips; and 2) changed by the dip in 
the same direction, although only the hydrogenous 
contributions are changed proportionately. 

From Eq. (2), the approximation for the r e so -
nance escape probability across a narrow reso-
nance is, then, simply 

roo Z A ( £ ) 
P = e X » - J - o o I J g ) ™ * W d E , (3) 

where an aster isk denotes that the value is to be 
for no absorption. Thus, 

J*{E) =Zs<t>*(E), (4) 

where the scattering cross section is assumed 
constant. Furthermore, if the flux immediately 
above the resonance is 1/E then 

q*(E) (5) 

and Eqs. (2-5) yield the Wigner formula. However, 
if the flux immediately above the resonance is not 
1/E, Eq. (5) must be modified before being com-
bined with Eqs. (3) and (4). 

For this more general case, let u„ be the 
lethargy of the n'th resonance, numbered in order 
of increasing lethargy. Let zAn (u) be the absorp-
tion cross section of this resonance, and pnj the 
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non-absorption probability ac ross it. Finally, let 
all lethargy-dependent quantities between reso -
nances n-1 and n be subscripted by n. Within 
resonance n, 

J*(w) = Zs</>n(u) and q*(u) = qn, 

so by Eqs. (2) and (3) 
ZA„ (u) 

Pn = exp - r J — a Z
T
 (n) 
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where 

wn{u) = ?<s<l>n(u) 

Qn 
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The rate at which resonance n absorbs neu-
trons is (1 -pn)Qn, which is to be considered the 
size of the negative monoenergetic source r e -
placing this absorption. Thus, 

l(u) = <l>n(u) - (1 -pn)qnG(u-Un), 

where G{u-un) is the flux at u f rom a unit mono-
energetic source at un. Since qn+i = pnqn by 
definition, 

Wn+l(u) =pn~1 W„(u) - ZS( l-pn ) G(U-U„). (7) 

In principle, now, Eqs. (6) and (7) could be coupled 
to give values of pn for successive values of w. 
The sequence is initiated by using the Wigner 
formula for some resonance with 1 /E flux im-
mediately above. 

Although the general form of the function 
G(u-un) is much too e r ra t ic to handle, usually only 
its asymptotic form is needed. The resulting 
correct ions to the Wigner formula will thus be 
those f i r s t required as the level spacing is de-
creased from infinity. The calculation will now 
be illustrated for hydrogenous mixtures, and only 
the principal transient will be retained. A ra ther 
unique simplification is that this transient is non-
oscillatory3 . However, it would be s t ra ightfor-
ward to generalize the procedure to include osci l -
latory additional t ransients and cover any mixture 
of isotopes. 

In a nonabsorbing medium, the asymptotic flux 
per unit lethargy f rom a monoenergetic source at 
lethargy un is 

G(u-u„)- [J~l + a exp - r(u-unj] (8) 

where r is the nonzero rea l root to the t ranscen-
dental equation3 '4 

Here,£s// is the scattering c ross section of hydro-
gen, HSi and A,- a re that and the maximum lethargy 
gain per collision for a nonhydrogenous isotope i, 
and ai = exp - A,-. 

Now, wn(u) is always of the form 

wn(u) = I " 1 - ft, exp - r(u-un). (9) 

Equations (7-9) give 

+ (!-/>«) a] exp - r{un+l-un). 
(10) 

Successive pn's can be generated by coupling 
Eq. (10) with the resul ts of Eqs. (6) and (9), 
namely 

(u) 
Pn = Pnw exp ft, £ 

S
T
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exp - r{u-u„)du9 

(11) 

where 
_ In fOO L, 

Pnw = exp - -=-, with In = 7 - 7 3 du, (12) Z T (w) 

is the (known) Wigner, or wide spacing, formula 
fo r the resonance escape probability ac ross r e so -
nance n. The sequence is s tarted by setting ft, = 0 
for some resonance preceded by a 1/E flux. It is 
easily seen that pn approaches pnw for wide 
spacing. 

Since the resonances a re narrow, in Eq. (1) the 
l/E factor and a 1 /VF coefficient in S A (£) a re 
usually taken outside the integral sign with E r e -
placed with En. It would thus be consistent to r e -
place Eq. (11) with the simple form 

Pn = Pnw exp ft,/,. 
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