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Letters to the Editors 

Divergence of the Mean Power Level 
During an Oscillation Experiment 

The purpose of this le t ter is to present a simple 
formulation of the reac tor dynamics equations for 
sinusoidal reactivity variation which can be solved 
analytically. It is thereby possible to est imate the 
rate of divergence of the power level during an 
oscillation experiment. Similarly, it is possible to 
predict a mean value of the reactivity l e s s than 
zero which should eliminate the mean-power-level 
drif t . 

The usual reactor dynamics equations are: 

n (1) 
i 

Ci = — - K Ci , (2) 

where the notation is standard. 

Let p = 0 t < 0 (3) 
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The equations a re scaled by defining a new set of 
variables, 

N = n/no 

Ci = c i / c i 0 , (4) 

where no and c a r e the equilibrium values of 
n and cf for t < 0. 

Substitution of Eq. (4) into Eqs. (1), (2) and (3) 
yields 

PiCi 
T0N = (e, + €2 sin cot - (5) 

i p 

TiPi = N - Ci , (6) 

where 

T
0
 = l/P 

Ti = 1A i 

= P i / 0 

e
2
 = P2//
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with initial conditions 

N(t<0) =Ci(t< 0) = 1. 

In order to solve Eqs. (5) and (6), approximations 
a r e introduced that a re accurate fo r low-frequency 
oscillation: the zero-prompt- l i fe t ime approxima-
tion, T0 = 0, and the replacement of the usual six 
delayed neutron groups by a single delayed group 
with constants, (3* and r*, assigned fictitious 
values such that the reac tor t r ans fe r function is 
exactly represented at zero frequency by the ap-
proximations 

i 

i 
These approximations yield a good representat ion 
of the reac tor t r ans fe r function, within the general 
limitation of neglecting spatial effects , 

for 0 < < — (footnote (a)). 
Z7T T0 

In addition use of the zero- l i fe t ime approximation 
requi res that the reactivity never exceed prompt 
cr i t ical , a condition easily met in the oscillation 
experiment. 

Introduction of these approximations reduces 
the original set of equations to the following: 

N = C [ 1 - ex - e2 sin art]"1 (7) 

r*C = N - C . (8) 

The solution for C f rom Eqs. (7) and (8) can be 
reduced to quadrature: 
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The integrals in Eq. (9) can be evaluated to yield 

a

See, for example, M . A . Schultz, Control of Nuclear 
Reactors and Power Plants, (pages 115-120) McGraw-
Hill, (1961). 
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The value of C(£) can be written more simply 
when cot = (2n + 1)71. If we restrict consideration 
of the solution to only those values of t when the 
above equation is satisfied, 

ur*j0n C = -u)t + oot 
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Substitution of Eq. (11) into the equation for neu 
tron density, Eq. (7), then yields 

N(t) = 
1 - e

2
 sinoot

 e x p

1 r * ^ ( l - e ^ - e , 
-1 

(12) 

If ei is chosen equal to zero (i.e., for reactivity 
oscillation about a zero mean value), the neutron 
flux can be approximated by 

N(t) = [1 + e2 sin utf]exp j ^ - . (13) 

Hence, the mean power drift is exponential with an 
e- folding time of 2r*/e 2

2 and has a second-order 
dependence on the reactivity perturbation. It 
should be noted that the result is independent of 
the oscillation frequency, cv . 

Evidently, the drift can be reduced to zero by 
setting 

(1 ~ ei)2 -
 e

 2* = 1 

Or 

C l
 = l - V T ^ e ? 

Although the simplicity of the model precludes 
rigorous application of the solution, the results are 
in agreement with physical intuition and show the 
important role of the delayed neutrons in causing 
the mean power drift during an oscillation-experi-
ment. 
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A More Straightforward Use of 
Variational Principles with 

Boundary Conditions 

Pomraning and Clark1 recently added boundary 
conditions to a variational principle for solutions 
to the transport equation2 (the additional terms, 
although described as having to be guessed, were 
derived from a general procedure independently 
by Selengut3). Their treatment of one-group dif-
fusion theory for a homogeneous slab will now be 
reviewed for the special situation in which scat-
tering is isotropic and no neutrons enter the med-
ium from outside its surfaces. 

For a slab extendingfrom z = a to b, a functional 
is defined 

dz f_d\i [(/)* m - s<f>* - T<t>] + 

The operator H is given by 

H<j>(zffi) = li ^ + 0 - | f d\xT 0 (z,ju') , 

where 2 is taken in units of total mean f ree paths. 
The symbol c is the number of secondaries per 
collision, S is the (given) source, and 

0*(*,ju) = (f)(z,-ii), 

T{Z,[L) = S(z,-FI). 

Imposing the condition that F be stationary with 
respect to arbitrary variations in 0 is equivalent 
to making 0 equal the solution to the t rans-
port equation: 

H(j)(z,fJL) = S(Z,JJL) and 

<p(a,JUL) = 0 for ILL > 0. 

0(6,JUL) = 0 f o r 11 < 0 . 

We now further specialize to the situation in 
which S is isotropic: 

S(z,n) = T(z,ii) = |s0(s). 

The authors make a P-l approximation, 
1 3 

0U,ju) = 2 0(*) + g ^ 
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