
letter to the Editor 

Transport Calculations in 
Cylindrical Geometry 

In past years, the solution of the one-speed integral trans­
port equation in homogeneous one-dimensional bodies has 
attracted many researchers, and several methods have been 
developed for dealing with it, among them the integral trans­
form method I UTN) and the Carlvik spatial-spherical har­
monics (SSH) method.2 

Recently, a new analytical method developed by Milgram 3 

has been applied to the solution of the critical and surface­
source problems in cylindrical geometry with isotropic scatter­
ing. Questions regarding differences between this analytical 
method (henceforth referred to as AN) and the fTN have been 
raised 3 but not fully resolved. Within the framework of the 
general approximation theory, both methods are essentially 
equivalent, as is shown here. Numerical comparisons of the 
two approaches also show that the fTN method has a better 
rate of convergence. 

To prove the equivalence, we first review the Galerkin­
Petrov method. 4 We consider an equation of second kind: 

A1> = H1> + S , (I) 

where H is an operator acting in a separable Hilbert space X, 
and we let B = {¢i,J = 1,2; ... } and B* ={¢!, i = 1,2, ... } 
be two complete linearly mdependent sets. Then, denoting 
by XN and X ~ the linear spans of the N first elements of 
Band B *, respectively, the Galerkin-Petrov approximation 
of Eq. (I) in subspace XN is 

PN(AN1>N - H1>N - S) = 0 , (2) 

where 1>N E XN and PN: X ~ X~ is the orthogonal projection 
associated with subspace X~. If Sf 0, then AN = A. 

In the following, we confine ourselves to the special case 
in which B * is taken to be the dual set of B, i.e., (¢: ,¢j) = 
bij , where (,) is the scalar product in X. Equation (2) can 
also be written as 

N 

AN 1>7 = ~ (Pij 1>1 + Si) , (i=I, ... ,N) . (3) 
j=1 

Here, 1>7 and Si are the components of 1>N and S on the basis 
{¢i, i .;;;; N} of subspace XN, and the matrix elements are given 
by 
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Now let us consider the above technique as applied to the 
steady-state one-speed integral transport equation with iso­
tropic sources and scattering in a homogeneous body. We take 
X as the set of square integrable functions for the scalar 
product 

(f;g) = fr, f(r)g(r)dr , 

where V is the volume of the body. Thus, henceforth, Eq. (I) 
is regarded as the integral equation with operator 

( exp(-~Ir - r'l) I I 

H1> = Jv 41Tlr _ r'12 1>(r )dr , (5) 

where ~ is the total macroscopic cross section. Note that the 
compactness of H assures the convergence of the Galerkin­
Petrov approximation. 4 

Milgram's AN method is readily cast into the form of a 
Galerkin-Petrov approximation. Indeed, the method is based 
on the expansion of S, 1>, and H1> into series of even powers 
of , (distance to the axis of the cylinder), the approximation 
of order N being obtained by equating the coefficients of 
,7.11 for n < N. Therefore, the AN method can be viewed as a 
Galerkin-Petrov approximation of Eq. (I) with the nonorthog-
onal bases B = {". = ,2(;-1) I' = I 2 } "PI " , ••.• 

On the other hand, even though the ITN method solves 
the Fourier transform of Eq. (1) by expanding the kernel of 
the transformed integral operator into a complete set of 
orthonormal functions {Xi,i = 1,2, ... }, its equations are 
step-by-step Fourier images of Eqs. (2), (3), and (4). The 
method has been shown to be completely equivalent to 
Carlvik's SSH method, which uses an orthonormal set B = B * 
to construct a Galerkin-Petrov approximation of th~ integrai 
transport equationS; the equivalence is based on the fact that 
the fTN expansion functions are Fourier transforms of those 
of the SSH method: Xi = ¢;e, where the caret indicates the 
Fourier transform and 6 is the characteristic function of 
volume V. Legendre polynomials are currently utilized as the 
base functions for calculations in homogeneous slabs and 
spheres, and, for a cylinder of radius a, the orthonormal basis 
B is the set of Legendre polynomials of argument2,6 
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Consequently, the ITN and AN methods solve the integral 
transport equation in a homogeneous cylinder by using the 
same projective technique, but with different bases: While the 
former uses an orthonormal basis, the latter does not. In both 
methods, the subspace of approximation XN is the space of 
polynomials of ,2 of degree smaller than N, and the approxi­
mate solution cflN is obtained by making the residual of Eq. (I), 

R(cpN) = ANcpN - HcflN - S , 

orthogonal to the "dual" space X~. For the ITN method, 
X» = XN and the residual must be a function orthogonal to all 
polynomials of ,2 of degree smaller than N, whereas for the 
AN method, X» =F XN, and the residual has to be a linear 
combination of powers of r2 of degree greater than N. 

The preceding remarks also show that if, as suggested in 
Ref. 3, Legendre polynomials are implemented in the AN 
method, the results so obtained will be identical to those that 
would be obtained with the ITN method. 

A comparison between the two methods can be established 
at two levels: 

1. the relative rate of convergence with N of the approxi­
mate solutions to the exact one 

2. the possibility of using symmetry properties of the 
transport operator to reduce the amount of numerical 
work involved in the calculations of the collision matrix 
elements f1j. 

A comparison of convergence rates is shown in Tables I 
and II, in which ITN results for the critical and the surface­
source problems are compared to their AN counterparts. The 
ITN calculations have been performed with a previously de­
veloped program,6 and the AN values have been taken from 
Ref. 3. Comparison of the critical eigenvalue A and the rod 
average flux shows that, for the set of calculations considered, 
the ITN method converges faster than the AN. 

With isotropic scattering, the integral transport operator is 
symmetric: 

(f,Hg) = (g,Hf) . 

Thus, a numerical advantage can be gained when an 
orthonormal basis is used, as with the fTN method. This 
results in the matrix reciprocity relations, 

(6) 

TABLE I 

Values of the Critical Eigenvalue A as a Function 
of the Optical Radius T 

T A4 A9 fT4 fT9 

0.01 0.013299 0.013280 0.01327337 0.01327339 
0.10 0.11778 0.11760 0.1175457 0.1175458 
0.30 0.29228 0.29184 0.2916970 0.2916974 
0.66862 0.50098 0.50025 0.5000022 0.5000031 
0.80743 0.55663 0.55583 0.5555558 0.5555568 

1.02085 0.62619 0.62531 0.6250019 0.6250031 
2.0 0.80566 0.80468 0.8043225 0.8043243 
3.57744 0.91027 0.90942 0.9090907 0.9090927 
5.41152 0.95330 0.95265 0.9523826 0.9523843 
9.04458 0.98093 0.98059 0.9803962 0.9803973 

TABLE II 

Values of the Average Flux for the 
Benchmark Black Rod Problem 

(T = optical radius, c = number of secondaries per collision) 

T C As A34 ITs IT34 

0.0 0.75775 0.75873 0.758791214 a 

0.2 0.82365 0.82452 0.824582113 0.824582108 

0.5 0.4 0.90257 0.90331 0.903361377 0.903361370 
0.6 0.99885 0.99941 0.999451305 0.999451297 
0.8 1.1190 1.1193 1.11934078 1.11934077 
1.0 1.2732 1.2732 1.27323954 a 

0.0 0.11594 0.12568 0.1263404 a 

0.2 0.13931 0.14894 0.1495917 0.1495913 

5.0 
0.4 0.17471 0.18410 0.1847411 0.1847402 
0.6 0.23578 0.24475 0.2453634 0.2453622 
0.8 0.37384 0.38192 0.3824921 0.3824908 
1.0 1.2732 1.2732 1.273240 a 

"The ITN values for c = 0.0 and c = 1.0 are exact at any 
order N. 

which nearly cut in half the number of these computations. 
This is not the case for the AN method, for which it is not 
even possible to write a matrix element as a finite linear 
combination of other matrix elements, due to the fact that 
¢f is not a polynomial of finite degree. 

We wish to further compare the ITN and AN methods for 
the surface-source problem with incoming isotropic angular 
flux v, for which it is possible to obtain the corresponding 
source terms, Si = qi, from the matrix elements. This is done 
by using the conservation equation for uncollided neutrons,7 

(7) 

(Here, J and cfl are, respectively, the uncollided current and 
scalar flux produced by source S.) With S = 1/>(, we obtain 

41TV 
qi = - (o5il - ~Pil) , (8) 

al 

where we have assumed that the first representation function 
is constant: 

¢I =al . 

This result is valid for the two methods. In particular, for the 
AN method, al = I, and, with the source normalization of 
Ref. 3, 

The resulting relation, Eq. (8), can be verified using Eqs. (20) 
and (23) of Ref. 3. 

Still another comparison arises from the possibility of 
reducing the problem with linearly anisotropic scattering, 

~s(J.I) = 4~ (~s + J.I~D , 

to the isotropic scatt,ering problem. As has been shown else­
where,6 the Galerkin-Petrov approximation for the linearly 

7R. SANCHEZ, Nuc/. Sci. Eng., 64, 384 (1977). 
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anisotropic scattering problem is given by the system of 
equations, 

N _ 

'tW<I>f=6(PijF/+Pi/Bf')+Qi' (i=I, ... ,N), (9a) 
/=1 

written in notation slightly different from that of Eq. (1). In 
this equation, 

Ff = Ls<I>f + Si , 

Bf = Li[Si - (L - Ls)<I>fl + S/ , 

and Si and S/are, respectively, the components of the isotropic 
and anisotropic volume sources. The anisotropic matrix ele­
ments Pij can be written in terms of the isotropic matrix 
elements6: 

- '" k . P;j = L..1 Aj Pik - AI ' (9b) 
k 

where, for the cylinder, 

A7 = [¢t, fa d;' f:' ¢J(rll)rlldrll] (9c) 

For the ITN method, these coefficients vanish except for 
k = j - I, j, or j + I (Ref. 6). Similarly, for the AN method, 
one finds 

'k __ I_( 2j~ _ ~ . ) 
1\/ - (2j)2 a Uk 1 Uk,j+1 • (9d) 

So, for both methods, it is possible to solve the linearly 
anisotropic scattering problem at order N with the isotropic 
matrix of order N + I. 

Although no definitive proof has been given as to which 
method has the better rate of convergence, the ITN method 
gives the best results in all the calculations that we have made. 
Both methods share the numerical advantages shown in 
Eqs. (8) and (9), but only the ITN method has the important 
matrix symmetry of Eq. (6). 

We think that these facts are sufficient evidence to support 
the general conclusion that Galerkin-Petrov approximations of 
the integral transport equation based on orthonormal func­
tions are superior to those utilizing nonorthogonal expansions. 
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