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Pmkk -Cmk y — ( X + m ) j P\m (9) 

The Cmk are determined by the normalization of 
the columns of pm to unit length. Thus 

- 2 ^ 2A + 1 (X - m) i 2 ( ) ( . 
Cmk ~ 4tt (X + m) I UOi 

X=o 

The eigenvalues, rmk [ y are determined by the 
requirement that, in an Z-th order truncation, 

Pm,L+ l.k = 0 ° r PL+l.m ( F mk ) = 0. 
_2 

The series for CQk can be summed by noting 
that4 

L 

£ (2X+ l ) P A ( « i ) ^ A ( « a ) , . 
X = o (11) 

Taking limits as OJ2 = r o k in Equation (11), 
and using Equation (10), we find 

E (2X+1 )p\{rok) 
X=o 

= (x + i) p'L+1(r0&) pL{rok). (12) 

But 

= (1 - r2
0,r (L+1) [pL(r0j 

- rokpL+1(rok)]. (13) 
Substituting Equation (13) in Equation (12) gives 

t (2x+ i )P l ( r o k ) 
X = o 

= (1 - r
2

ok
 r (L + 1 ) 2 P 2 ( r o^ ) = 4ttC0,-2 . (14) 
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A Note on the Measurement of the 

Transport Mean Free Path of 

Thermal Neutrons in Graphite 

by a Poison Method* 

J. M. Hendrie et al.,1 have reported a meas-
urement of the transport mean free path of thermal 
neutrons, \t, in graphite by a copper-poison 
technique which is analogous to the heavy-
water/boron technique described earlier by S. W. 
Kash and D. C. Woods.2 The value of \t = 2.77 ± 
0.05 cm reported by Hendrie is somewhat larger 
than the value of 2.65 ± 0.03 cm inferred from 
measurements by E. Starr and G. Price3 for the 
same AA Graphite, using pulsed-neutron tech-
niques. In addition, other measurements by the 
pulsed-neutron method (all referred to a graphite 
density of 1.60 g/cm3) are tabulated in Table I and 
are seen to have an average value of approximately 
2.59 cm. Measurements of Xt by extrapolation 
distance, complex diffusion length, and averaged 
cross sections are also indicated in Table I, but 
are not considered to be as reliable as either the 
pulsed-neutron method or the poison method. 

Recent measurements of the diffusion-cooling 
constant, c, as shown in Table II, indicate that the 
value is probably in the neighborhood of 38 x 105 

cm4/sec, rather than that of 12 or 16 x 105 

cm4/sec, which were reported earlier.4 '5 The 
transport mean free path reported by Hendrie 
et al.,1 was not corrected for the effect of diffusion 
cooling because that effect was considered to be 
negligible. However, in view of the large values 
of c recently reported, the value of Xt as measured 
by the copper-poison method has been recomputed 
and is reported herein. 

*Work done under the auspices of the U.S.A.E.C. 
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TABLE I. 

Transport Mean Free Path of Thermal Neutrons 
in Graphite3 

h 
cm 

Method Reference 

2.66 ± 0.23 extrapolation distance A. V. Antonov4 

2.74 ± 0.03 (AA) extrapolation distance J. M. Hendrie1 

2.74 ± 0.11 averaged cross section D. J. Hughes8 

2.55 ± 0.09 complex diffusion length V. Raievski7 

2.49 ± 0.04 pulsed neutron A. V. Antonov4 

2.58 ± 0.02 (I) pulsed neutron K. H. Beckurts5 

2.56 ± 0.03 (II) pulsed neutron K. H. Beckurts5 

2.62 ± 0.02 (III) pulsed neutron K. H. Beckurts5 

2.65 ± 0.04 pulsed neutron M. Sagot8 

2.58 ± 0.02 pulsed neutron H. Klose9 

2.59 ± 0.01 (GBF) pulsed neutron E. Starr3 

2.65 ± 0.03 (AA) pulsed neutron E. Starr3 

2.77 ± 0.05b (AA) poison method J. M. Hendrie1 

2.62 ± 0.04c (AA) poison method J. M. Hendrie1 

aAll values corrected to graphit density = 1.60 g/cm3. 
bNot corrected for diffusion cooling. 
cCorrected for diffusion cooling. 

TABLE II. 

Diffusion-Cooling Constant of Graphite 

C x 105 cm4/sec Method Reference 

12.0 ± 1.9 pulsed neutron A. V. Antonov4 

16.3 ± 2.5 pulsed neutron K. H. Beckurts5 

13.4 ± 3.3 Ag transmission K. H. Beckurts5 

26 ± 5 pulsed neutron H. Klose9 

37.9 ± 4 pulsed neutron _ M. Sagot8 

38 ± 5 pulsed neutron (v) E. Starr10 

34 ± 3 (GBF) pulsed neutron E. Starr3 

41 ± 4 (AA) pulsed neutron E. Starr3 

The effect of diffusion cooling in the poison 
method can be seen by examining the neutron de-
cay probability, Az, which describes the decay rate 
of neutrons in an absorbing and diffusing medium 
with macroscopic absorption cross section, T,a , 
mean free path, Xt, and buckling, B2, 

^ B* - cB\ (1) 

Since the copper-poison method involves a steady 
state condition with an external source of neutrons, 
X, = 0, and B2 = -1 /L2 , where L is the diffusion 
length of thermal neutrons. Thus, equation (1) can 
be transformed to the following form for the 
exponential experiment: 

X tv 
0 = Zav - ~~3 (1/L2 ) - c( 1/L2 )2. (2) 
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If one assumes that 1/v and that \t = con-
stant, the averages over the products can be 
removed and replaced by an average over the 
neutron velocity v, Z a now refers to the macro-
scopic cross section at the mean neutron velocity, 
v. Differentiation of equation (2) with respect to 
E<z yields the following solution for Xt: 

Xt = 3 d(l/L2) 
dXa 

-1 _|£_ (l/L2) 
v 

(3) 

Equation (3), consequently, is the basis for the 
measurement of X* by the poison method, in which 
the variation of diffusion length, Z, is observed as 
a function of poison cross section, Z a . In the case 
of c = 0, equation (3) reduces to: 

p ( l / L 2 ) ' A, = 3 r (4) 

The data of Hendrie et al.,1 have been re -
computed with a diffusion-cooling constant equal 
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to 38 x 105 cm4/sec. They yield a corrected 
value of Xt equal to 2.62 ± 0.04 cm at a graphite 
density of 1.60 g/gm3, which can be compared 
with the value of 2.65 ± 0.03 cm obtained by 
pulsed-neutron methods with the same graphite. 
The effect of this correction upon the previously 
reported graphite absorption cross section of 
3.44 ± 0.08 mb1 is negligible since the correction 
is a minimum at long relaxation lengths. 

It appears that the transport mean free path of 
thermal neutrons in graphite as measured by the 
poison method is in agreement with the value 
obtained by the pulsed-neutron method, after due 
account is made for diffusion-cooling effects. 

Glenn A. Price 

Brookhaven National Laboratory 
Upton, New York 
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Degenerate Solutions to the Transport 
Equation With Anisotropic Scattering 

Following the work of Case,1 Mika2 has shown 
that a complete set of eigenfunctions to the one-
velocity transport equation for plane symmetry 
can be found when the scattering function may be 
expanded in a finite series of Legendre poly-
nomials. 

It may happen that some of the solutions to the 
homogeneous transport equation, corresponding to 
multiple order eigenvalues, are degenerate. In 
order to find the additional solutions necessary to 
complete the set of eigenfunctions, one has to take 
derivatives pf the degenerate eigenfunction with 
respect to the eigenvalue (cf. Eq. B.5, p. 425, of 
Reference 2). In particular, when the eigenvalue 
v0 is a root of order two, one solution is ipv0(x, V- )> 
while according to Equation B.5, a second solution 
is 

[e~x/v 0„Ox) l ( 1 ) 

It is the purpose of this note to point out that 
this procedure is not always valid for anisotropic 
scattering and to indicate where the difficulty 
arises for a particular case. For a nonabsorbing 
medium (c = 1) there is always a double root at 
infinity, and the second solution corresponding to 
this root, as given by Equation (1), is correct for 

lK. M. CASE, Ann. Phys. 9, 1 (1960). 
2J. R. MIKA, Nucl. Sci. Eng. 11, 415 (1961). 

isotropic scattering, but incorrect for anisotropic 
scattering. 

For simplicity, consider the case of linear 
anisotropic scattering. Let L be the linear 
transport operator for this case. 

L = 1 + » T x - U l (2) 

where Si is the first-order scattering coefficient, 
which is equal to three times the mean cosine of 
the scattering angle in the laboratory system. The 
homogeneous transport equation with linear ani-
sotropic scattering may then be written as 

Lip(x,ii) = (1 + ju —)ip{x,ii) 

- f X i = 0. (3) 

We seek solutions to Equation (3) of the form 

ipv ) = e"x/v <pv(ii) (4) 

where, for the case the discrete eigen-
functions are 

cv 
[1 + ( l - c ) s i H . (5) 

2(v - ii) 

Operating on Equation (4) with L, one obtains 

C —x/v 

Lipv(x,id) = ^e (1 + sijuz/) A(v) (6) 

where 

A(v) = 1 - cv tanh"1 ^ - sxc(l - c)v2 (i> tanh"1 ^ - 1). 

(7) Since A(i^) = 0 is even in u, the roots occur 
in pairs. Let I and call the root having the 

smallest magnitude | 0 . Since A(?o) = 0, the 
solution corresponding to | = | 0 is the eigen-
function 

0 (8) 

We note that for 11 - c\ « 1, the root |o(c) 

to A (£ ) = 0 is given by u 
(3 - Si ) ( l - c) 

Hence, 

?c lim 
c—1 (3 - Sx )(1 - c) 

1 + 0(1-c ) . 

(9) 

|o = 0 is therefore a double root for c = 1. 
The eigenfunction corresponding to this root is 

given by Equation (8) in the limit as c ip0 = i , 
since lo^O as c~* 1 in the sense given by Equa-
tion (9). 


