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The c-axis and dimensional points plotted from 0 
to - 1000 MWd (1 MWd = 7 X 1016 nvt for neutrons 
with energies above 0.6 MeV) denote changes prior 
to the first anneal. Data between 1000 MWd and 
2000 MWd were accumulated over a period of sev-
eral years. At the end of the program, unirradiated 
stock material was continuously irradiated to 
check that irradiation and annealing conditions re -
mained the same. The enclosed points show the 
data obtained. All values shown for exposures ex-
ceeding ~1000 MWd represent measurements after 
the 350 C anneal. Stored energy was determined 
from heats of combustion measurements made by 
the National Bureau of Standards. These measure-
ments consumed appreciable portions of the 
sample and were made less frequently than those 
of the other properties. The variation in magni-
tude of exposures between anneals is shown by the 
position of the dimensional data points along the 
abscissa. Length changes were measured before 
and after most anneals and are shown in Figure 2. 
The dashed lines are estimates of the values not 
measured before annealing. The sample and ali-
quots were annealed at 350 C for 4 hours. No 
changes outside of experimental error occurred 
when the time of annealing was varied from 1 hour 
to 16 hours. C -axis values after irradiation at 30 
C and prior to annealing did not change in aliquots 
that stood at room temperature for six years. 

The decomposition during reirradiations demon-
strated by these studies involves species formed 
during the anneals. Stored - energy and c-axis 
changes during the first irradiation can be quanti-
tatively accounted for by a model which requires 
that the data reflect properties of one interstitial 
entity4'5. This model does not appear to account 
for experimental data if radiation decomposition 
reactions for the interstitial are included. It is 
therefore concluded that the interstitial formed 
during the first irradiation is more stable towards 
irradiation than are the clusters formed during 
anneals. 

The mechanism for cluster break-up during 
reirradiations cannot be determined from these 
studies. It is possible that decomposition results 
from collision effects of energetic neutrons or 
from "hot atom"1 reactions. 
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Decoupling the Energy-Dependent 
Spherical Harmonics Equations* 

We show how to transform the discrete energy 
approximation of the spherical harmonics equations 
for the slowing-down of both gamma rays and 
elastically scattered neutrons to a system of 
spatially decoupled simultaneous differential equa-
tions. The solution of the spherical harmonics 
moments problem in very high orders of approxi-
mation is made feasible by decoupling, since the 
solution of a large number of decoupled equations 
requires no more computational effort than the 
simultaneous solution of a modest number of 
coupled equations. 

This method could be applied advantageously to 
the study of the deep penetration of gamma rays 
where the strong forward peaking of the photon 
distribution necessitates the use of high - order 
angular expansions. It could also be used to 
calculate neutron distributions in highly absorbing 
media and in light moderators in which the 
mathematically simple age approximation is 
inadequate. 

In the spherical harmonics approximation of 
order L, the space-angle-energy particle distri-
bution, &(z, co, 0, u), which we restrict to an even 
function of the azimuthal angle, 0, is represented 
as 
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where £ is the depth coordinate; 
Q = i (1 - co2 )* cos 0 + j (1 - co2 )* sin 0 + feco is a 

unit vector in the direction of particle 
motion; 

i , j , and k are the unit vectors parallel to the 
x, y, and z Cartesian axes; 

cos"1 co and 0 are the polar and azimuthal 
angles on the surface of a unit sphere with 
its axis along the z-direction; 

Pim (co) is the associated Legendre polynomial 
defined by 

^ (CO) M l - c o 2 ) - , 
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* Prepared under the sponsorship of the Douglas Air -
craft Company Independent Research and Development 
Program. Account No. 81426-010. 
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where P ^ w ) denotes an 4-th degree Legendre where u { ) = C(ui), a function independent 
polynomial,1 u is the energy variable (lethargy of 4. (This is seen to be true by examining the 
for neutrons, wavelength for gamma rays); forms of f(ii\u, ur) for neutrons and gamma rays 

in References 2 and 3.) 
Note from Equation (4) that ym is a non-

singular, symmetric, {L - m + l)2 matrix. Thus 
(2) it is diagonalized by the unitary matrix, pm, 

whose columns are its eigenvectors normalized to 
unit length. Thus 

r , x J 24 + 1 ( 1 -- m)! 
m)! 

' r ° o s m$ f-11 d(x)pi™ ^ ^ ^ u^ • 

The spherical harmonics moments, (z, u), 
satisfy the system 

E [rmix Yz + ° t { u ) 
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+ Sim (z,u) 
0<g 4 < L 

0 < m < 4 
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where 
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where is a diagonal matrix whose elements 
are the eigenvalues of ym . 

Now, letting (j>r, Pm 1pm and - P I , 
we multiply Equation (5) from the left by pTm , and 
make use of Equation (6), to obtain 

F m ~dz + [ ^ ( ^ i ) " 67720 a* 'C ] 7 ( Ui>i 
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aT (u) is the macroscopic cross-section for all 
interactions; 

Since^the slowing-down source which contributes 
to <pm (z, u{) is determined by the <j>0 (z, uj), 

f(n\u9ur) is angle-energy cross section for j < i, this source is explicitly known when it is 
required to solve for the (z, ut). Thus the 
right hand member of Equation (7) is explicitly 
known then. Also the matrix operating on (z, u{) 
is diagonal. Hence the equations which determine 
the elements of a given (z, U{) are completely 
decoupled from each other and can be solved 
independently. 

To determine the elements of pm , note that a 
Slm (z, u) is an expansion coefficient of the representative equation in system (6) is 

scattering a particle with incident energy 
ur and emergent energy u through an 
angle cos"1 \i ; 

1 
i Pi(lL)f{lA\u,u')dll. 

source distribution, S(z, co, <j>, u), cal-
culated in the same way as \lrim (z, u) 
in Equation (2). 

Introducing a uniform mesh quadrature for the 
energy integral in Equation (3) and an obvious 
matrix notation, we obtain 

Yn 
d_ 
dz + \°T(Ui) - 5mo OtiCjll&m (z, U{) 

Pmik^mk > 
A 

fe=l, 2, . . . , L - m + 1 . (8) 

Equation (8) is identical in form with the recursion 
formula for normalized associated Legendre poly-
nomials.1 Hence 

£ aj f {Ui, Uj)lJr0(z, My) + Sm {z, u{) , 
7 = 0 

(5) 
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Pmkk -Cmk y — ( X + m ) j P\m (9) 

The Cmk are determined by the normalization of 
the columns of pm to unit length. Thus 

- 2 ^ 2A + 1 (X - m) i 2 ( ) ( . 
Cmk ~ 4tt (X + m) I UOi 

X=o 

The eigenvalues, rmk [ y are determined by the 
requirement that, in an Z-th order truncation, 

Pm,L+ l.k = 0 ° r PL+l.m ( F mk ) = 0. 
_2 

The series for CQk can be summed by noting 
that4 

L 

£ (2X+ l ) P A ( « i ) ^ A ( « a ) , . 
X = o (11) 

Taking limits as OJ2 = r o k in Equation (11), 
and using Equation (10), we find 

E (2X+1 )p\{rok) 
X=o 

= (x + i) p'L+1(r0&) pL{rok). (12) 

But 

= (1 - r2
0,r (L+1) [pL(r0j 

- rokpL+1(rok)]. (13) 
Substituting Equation (13) in Equation (12) gives 

t (2x+ i )P l ( r o k ) 
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= (1 - r
2

ok
 r (L + 1 ) 2 P 2 ( r o^ ) = 4ttC0,-2 . (14) 
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A Note on the Measurement of the 

Transport Mean Free Path of 

Thermal Neutrons in Graphite 

by a Poison Method* 

J. M. Hendrie et al.,1 have reported a meas-
urement of the transport mean free path of thermal 
neutrons, \t, in graphite by a copper-poison 
technique which is analogous to the heavy-
water/boron technique described earlier by S. W. 
Kash and D. C. Woods.2 The value of \t = 2.77 ± 
0.05 cm reported by Hendrie is somewhat larger 
than the value of 2.65 ± 0.03 cm inferred from 
measurements by E. Starr and G. Price3 for the 
same AA Graphite, using pulsed-neutron tech-
niques. In addition, other measurements by the 
pulsed-neutron method (all referred to a graphite 
density of 1.60 g/cm3) are tabulated in Table I and 
are seen to have an average value of approximately 
2.59 cm. Measurements of Xt by extrapolation 
distance, complex diffusion length, and averaged 
cross sections are also indicated in Table I, but 
are not considered to be as reliable as either the 
pulsed-neutron method or the poison method. 

Recent measurements of the diffusion-cooling 
constant, c, as shown in Table II, indicate that the 
value is probably in the neighborhood of 38 x 105 

cm4/sec, rather than that of 12 or 16 x 105 

cm4/sec, which were reported earlier.4 '5 The 
transport mean free path reported by Hendrie 
et al.,1 was not corrected for the effect of diffusion 
cooling because that effect was considered to be 
negligible. However, in view of the large values 
of c recently reported, the value of Xt as measured 
by the copper-poison method has been recomputed 
and is reported herein. 

*Work done under the auspices of the U.S.A.E.C. 
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