
Letters to the Editor 

Approximation to Neutron Escape Probability 
for Slab and Cylinder 

In a recent Note,1 an approximate expression of the 
neutron escape probability from an absorbing body was de-
rived in the form 

P{T) 
1 ATeT=P0(T)+PA(T) (1) 

where r is the optical mean-chord-length of the body and A 
is chosen so that the approximation be exact for T = 1. The 
validity of this approximation was demonstrated by the exam-
ples of the simplest geometries such as sphere, cylinder, and 
slab. The purpose of this Letter is improving the approxi-
mation for the special cases of slab and cylinder. Note that for 
a sphere, the evaluation of the exact expression of the escape 
probability does not require essentially more effort than that 
of the approximate one.) The idea behind the improvement 

TABLE I 

Relative Errors of Different Approximations to the Escape 
Probability from an Infinite Slab of Optical 

Mean-Chord-Length, r 

Ref. 1 FPb LSC 

T ^exact (ppt)a (PPt) (PPt) 

0.2 0.8371 42.7 3.6 ~ 0 
0.4 0.7403 39.2 -2 .0 -2 .7 
0.6 0.6665 27.1 -2 .7 -0 .1 
0.8 0.6068 13.1 -1 .6 1.5 
1.0 0.5568 0.0 0.0 3.5 
2.0 0.3903 -34 .3 2.6 2.0 
3.0 0.2955 -31 .6 0.0 -4 .1 

4.0 0.2349 -19 .2 -1 .4 -6 .0 
5.0 0.1935 - 9 . 0 -1 .1 -4 .8 
6.0 0.1637 -3 .1 -0 .5 -2 .8 
7.0 0.1414 ~ 0 0.4 - 0 . 8 
8.0 0.1243 0.9 ~o ~ 0 
9.0 0.1108 0.3 ~ 0 ~ 0 

10.0 0.0998 0.8 0.4 ~0 

"Parts per thousand. 
b FP = three-point fitting. 
CLS = least-squares fitting. 

'Y. A. CHAO and A. S. MARTINEZ, Nucl. Sci. Eng., 66, 254 
(1978). 

is straightforward. We consider A = A(T) as a function of r 
instead of being constant, i.e., we write 

P(T) 
1 - e" - A(r)re'T (2) 

It is easy to show that if A+(T) is the function by the use of 
which in place of A(T), Eq. (2) reproduces the exact escape 
probability P(T), then 

while 

A+(T) A 
4 exp( r /2) / r 3 

3 exp( r ) /4 r 4 

for a slab , 

for a cylinder , 

as r approaches infinity. Thus, a function, A(T), decreasing 
for small r values and increasing for large ones, may result in a 
better approximation to P(T) than a constant. On the other 
hand, there is no need for a very accurate approximation to 
A+(T) for extremely small and large r values, since in these 
cases the contribution of the correction term P^ to P is rather 

TABLE II 

Relative Errors of Different Approximations to the Escape 
Probability for an Infinite Cylinder of Optical 

Mean-Chord-Length, r 

Sauer Ref. 1 F P b LS° 
r ^exact (PPt)3 (PPt) (PPt) (PPt) 

0.2 0.88502 4.4 5.9 0.1 1.2 
0.4 0.79303 4.1 6.1 0.0 -0 .2 
0.6 0.71649 2.5 4.3 0.4 -0 .1 
0.8 0.65162 0.6 2.1 0.8 0.2 
1.0 0.59595 -1 .2 0.0 1.2 0.5 
2.0 0.40715 -5 .6 -3 .5 0.0 -0 .6 
3.0 0.30157 -4 .7 1.6 -1 .5 -1 .7 

4.0 0.23645 -2 .3 7.5 0.0 ~ 0 
5.0 0.19323 -0 .2 10.9 4.1 3.0 
6.0 0.16286 1.3 11.9 5.6 5.6 
7.0 0.14052 2.1 11.2 7.0 7.0 
8.0 0.12346 2.6 10.0 7.4 7.4 
9.0 0.11004 2.8 8.6 7.2 7.2 

10.0 0 . 0 9 9 2 3 2.7 7.3 6.5 6.5 

"Parts per thousand. 
b FP = three-point fitting. 
QLS = least-squares fitting. 



small. Therefore, we do not try to find an approximate A(T) 
function reproducing the divergence of the exact one at zero, 
in case of a slab, and at infinity, in both cases. 

Numerical tests show that choosing A(r) as a low-order 
polynomial of r results in no substantial improvement. Thus, 
the simplest function having a slope similar to that of the 
exact A+(T) is 

A(T) = A1 

1 + v 
+ A3T (3) 

where AU A2, and A3 are positive parameters to be fitted. Two 
methods of fitting were examined. In the first method, we 
demand that the approximation be exact for three given values 
of T; in the second method, the mean-square-error of the 
approximation was minimized by means of the general 
purpose data evaluating code RFIT (Ref. 2), using the exact 
values of AT) at T = 0.1 (0.1) 1 .0 (1 .0 )7 .0 . 

For slab geometry, the three fixed points (where the ap-
proximation is exact) are at r = 0.3, 1.0, and 3.0, and the 
resulting coefficients are 

AT = 0.56253 , A2 = 0.083450 , A3 = 1.9768 . (4) 

The least-squares (LS) fitting yields 

AI = 0.63703 , A2= 0 .11659 , A3= 2.5644 . (5) 

In Table I, a comparison of the exact and approximate 
values of the escape probabilities is given through the relative 
errors due to the approximation of Eq. (1), with A = 0.20474 
(Ref. 1), to the three-point fitting (FP), and to the LS of Eqs. 
(2) and (3) at several r values. 

For cylindrical geometry, the fixed points are T = 0.4, 2.0, 
and 4.0, and the coefficients are 

1 2 = 0.14769 A-x = 0.76992 (6) 

(7) 

'Y. A. CHAO and A. S. MARTINEZ, Nucl. Sci. Eng., 66, 254 
(1978). 

suggest a general approximation scheme for computing the 
neutron escape probability functions. To keep the param-
etrization simple (yet reasonably accurate), the effects from 
higher moments were only very crudely absorbed in the 
"effective" value of the second moment, A. To generalize A 
to a r-dependent function2 is to go beyond the second-
moment approximation and include more detailed effects of 
higher moment terms. This flexibility of keeping a r-depen-
dent A has also been noticed by Carlvik3 and by Chao and 
Yarbrough.4 

The neutron escape probability is defined as 

P(T) =' 
•I{T) 

I(T) = J exp ( - rx ) / (x )dx , (1) 

where f(x) is the cord length distribution function and x = 1/1. 
From the general property of the Laplace transform, we see 
that the small T behavior of / ( r ) [and p(R)\ is determined by 
the asymptotic behavior of fix) and that the asymptotic 
behavior of / ( r ) [and p(j)] is determined by the small x 
behavior of fix). Although fix) is often very complicated, its 
limiting behavior in small and large x is often traceable. 
Because of the particular relation between p(r ) and /(r) , it is 
the small r behavior of / that is more important in a practical 
approximation. In Ref. 1, we arrived at the approximation 
scheme of 

/ ( r ) = e'T(l +AT2 + . . .) (2) 

AI = 0.14854 , A2 

while the LS fitting results in 

AX = 0.14753 , A2 = 0.13933 , A3 = 0.72204 

Table II shows the relative errors of the approximations of 
Ref. 1 (with A = 0.098323) and of this Letter along with those 
of Sauer.3 
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Lux and Vidovszky remarked that no substantial improvement 
is attainable by generalizing A to a low-order polynomial of r . 
This is misleading and is clarified below. 

First, it should be pointed out that the relation given by 
Lux and Vidovszky, 

dA\0) 
dr 

<0 
does not seem to hold for a general case. In the other relation 
given by them, 

^+(0) = dp(0) 
dr 

2Z. SZATMARY, "Data Evaluation Problems in Reactor Physics. 
Theory of Program RFIT," KFKI-1977-43, Central Research Institute 
for Physics, Budapest (1977). 

3A. SAUER,Nucl. Sci. Eng., 16, 329 (1963). 

Reply to the Comments by Lux and Vidovszky 
on an Approximation to Neutron 

Escape Probability 

The original idea in Ref. 1 was to give a more careful 
analysis of the moment expansion approach and attempt to 

the derivative dp(0)/dT may also be and thus A+(0) is not 
always finite. As pointed out in Ref. 1, if / ( x ) extends to 
infinity and does not drop off exponentially, then A(T) has a 
singularity at r = 0. Depending on the nature of the singular-
ity, / l+(0) may diverge and dA*(0)/dT approaches On the 
other hand, if fix) extends only to finite x or drops off 
exponentially, then ^4+(0) is finite and 

dA*i0) 
dr Hi) 

Lux and Vidovszky's statement 

dA\0) 
dr 

((x ~ 1 )3> 

<0 
implies that ((x - 1 )3> > 0. I cannot see why this is true. 

In the two specific cases of an infinite slab and infinite 
cylinder, fix) goes like 1/x3 and 1/x4, respectively, and AW) 
contains a lnr singularity in the former case and a r lnr 

2I. LUX and I. VIDOVSZKY,Nucl. Sci. Eng., 69, 442 (1979). 
3I. CARLVIK, Private Communication. 
4Y. A. CHAO and M. YARBROUGH, "Application of the Moment 

Expansion Approximation to the Calculation of Dancoff Factors," in 
preparation. 


