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lation distance, z0, as calculated from the exact 
analysis are given in Table II. 

We feel that the type of comparison made above 
is important in verifying the accuracy of any nu-
merical code that solves the transport equation. 
For the DTF code, the handling of the boundary 
conditions, the eigenvalue search, and the linear 
and P 2 scattering options is apparently accurate. 
Although no information is obtained about material 
spatial variation or multigroup treatment, such 
comparisons can be made, albeit with very com-
plicated exact solutions. The table provides solu-
tions against which other codes can be compared, 
and in addition contains useful information about 
the behavior of critical thickness for anisotropic 
scattering. Even for the simple monoenergetic, 
homogeneous case, additional meaningful com-
parisons can be made. Exact solutions for critical 
radii for one-dimensional spheres can be obtained 
with relatively minor changes in the slab critical 
equation, and such solutions could be used to ex-
amine the treatment of ray-to-ray transfers 
(streaming) in curved geometry. Mitsis2 has given 
an exact critical equation for cylindrical geometry, 
solutions to which could be used to investigate the 

accuracy of two-dimensional angular quadrature. 
Although, in themselves, such comparisons verify 
only parts of ofttimes extremely complex codes, 
they provide the foundation upon which confident 
numerical computing can be based. 
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A Note on the Inverse 
Kinetics Analysis 

In their article1 Murray, Bingham and Martin 
have presented some solutions of the reactor 
kinetics equations for the reactivity variation re -
quired to achieve specified power responses. They 
show the usefulness of such an inverse method and 
demonstrate it by several examples. It is felt that 
an important case could be added to the list of 
power functions considered in the above-mentioned 
paper. 

For the reactor power function of the type 

n - no exp (at) (1 +A sinco /) 
the corresponding reactivity function can be found 
by solving reactor point kinetics equations. This 
is 

P = + P \ * i U ) * < * 
V i x i + a J ; U i + a ? ) (X / + 0?) 

T A B L E II 

Extrapolation Distance, z0 (mfp) 

c + c' c Czo)^ (*o )p2 

1 . 0 5 0 . 1 0 . 7 2 4 1 4 0 . 7 2 3 9 4 
0 . 3 0 . 8 4 2 2 2 0 . 8 4 1 5 1 
0 . 5 1 . 0 0 5 9 4 1 . 0 0 4 5 6 
0 . 7 1 . 2 4 8 1 5 1 . 2 4 5 8 0 
0 . 9 1 . 6 4 3 2 2 1 . 6 3 9 2 8 

1 . 1 0 . 1 0 . 6 9 0 4 2 0 . 6 8 9 8 2 
0 . 3 t 0 . 8 0 0 4 3 0 . 7 9 8 2 6 
0 . 5 0 . 9 5 1 8 1 0 . 9 4 7 3 5 
0 . 7 1 . 1 7 3 3 6 1 . 1 6 5 3 7 
0 . 9 1 . 5 2 8 9 9 1 . 5 1 4 9 8 

1 . 2 0 . 1 0 . 6 3 1 3 9 0 . 6 3 0 1 3 
0 . 3 0 . 7 2 7 1 9 0 . 7 2 2 5 2 
0 . 5 0 . 8 5 7 4 7 0 . 8 4 7 5 3 
0 . 7 1 . 0 4 5 1 8 1 . 0 2 6 7 4 
0 . 9 1 . 3 4 0 0 0 1 . 3 0 6 7 3 

1 . 3 0 . 1 0 . 5 8 1 4 6 0 . 5 7 9 7 4 
0 . 3 0 . 6 6 5 2 4 0 . 6 5 8 7 2 
0 . 5 0 . 7 7 8 1 1 0 . 7 6 3 9 5 
0 . 7 0 . 9 3 8 8 9 0 . 9 1 2 0 4 
0 . 9 1 . 1 8 7 8 3 a 

1 . 4 0 . 1 0 . 5 3 8 7 3 0 . 5 3 6 7 0 
0 . 3 0 . 6 1 2 3 2 0 . 6 0 4 5 2 
0 . 5 0 . 7 1 0 6 1 0 . 6 9 3 4 9 
0 . 7 0 . 8 4 9 2 8 0 . 8 1 6 3 5 
0 . 9 1 . 0 6 1 6 1 a 

X / f v ' , + Lt* + £ , frV J x 
l + ^ s i n w f L / (A,- + a) +oo J 

A cos w t _ e x p ( - a t ) 

1 + A s i n u t no ( 1 + ^ 4 s i n a ) t) 

v f x , j g * C , 0 /3, X» A A13, X, u) 1 

iV »o ' a + \t + (X, +a)2 + u;zJ * 

aNot calculable by present exact p rog ram due to the 
appearance of a second discrete eigenvalue. 

x exp (-at - Xj t) 
l + ^ 4 s i n c o / ' 
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where Cio is the initial delayed-emitter concen-
tration and Q characterizes the external neutron 
source. The other symbols have their usual 
meaning. 

This reactivity function has been used2 in defin-
ing the equivalent transfer functions of a reactor 
for both the critical state and the sub- and super-
critical state in dependence on the value a. The 
nonlinear effects (the influence of the amplitude A) 
and the conditions for using the above-mentioned 
transfer functions have been also evaluated. 
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On the Green's Function of 
Monoenergetic Neutron 

Transport Theory* 

In recent years several authors (Refs. 1, 2, 3 
among others) have used the normal mode approach 
to the solution of the monoenergetic neutron trans-
port equation. Each author has presented a devel-
opment of the angular Green's function. We shall 
illuminate here several misleading aspects which 
are generated by these previous discussions. 

For the sake of brevity, let us consider the case 
of isotropic scattering in a medium with plane 
symmetry. In the notation of Ref. 2, the neutron 
flux resulting from the 'monodirectionaT source 
6(jLt - ju0) 8(x) is given by 

r Jo M(v) 
~x/v 

dv, x > 0 

It should be noted that pt(x) has no unusual func-
tional properties since the uncollided neutron con-
tribution does not appear as a 5 distribution. 
Thus, it is not surprising that Eq. (1) is consistent 
with previously published results based on a nor-
mal mode expansion. However, Eq. (1) can be 
derived using the elementary methods of Ref. 4. 

Using Eq. (1) we can determine the angular 
Green's function (i.e. the angular flux resulting 
from the present source) via the relation 

*G(x,(j.;no) 

- \x-x'\/\ll I 
C r+oo q 

= * O ( * , M ; M O ) + G J L O O \JT\ P I ( X ' ) D X ' > ( 2 ) 

where 0) is the uncollided angular flux 
and c is the scattering probability. It is a 
straightforward matter to reduce Eq. (2) to the 
form 

A +1 
M( v) dv + 

- x/fi 
+ h( ju)A( ^ , f i o ) e 

_ <I)(-L, ju)0( -L , ju o ) x/L 
M_ 6 

x>0 (3) 

0 

M{ v) - p . . 

- h(-fd)A( \±,[±o)e 

e dv -

x <0, 

where 

= ~ M0) _ 4>(L,H)(I>(L,H0) _ 
' Mo M+ 

0(-L, jLt)0( -L, jUO ) 
M_ - r . 

+ 1 ,ld)<t>(v ,ld0) 
M{ v) dv 

and h{ 11) is the unit step function (i.e., h( 11) = 0, 
\i < 0, and h(n) = 1, 1u ^>0). 

The previously reported angular Green's func-
tions have taken the form of Eq. (3) but with 
A(ju,/i0) = 0- Essentially, these previous develop-
ments are based on the closure condition for the 
function set {</>(±L, M), , 

0(-Z/,]Uo) jx/L r0 (j){v, [lp) -x/v , . n 

"" M. e -J-iMUT6 dU> X < 0 ' */„ jiM_ M(L,nH(L,n') n<t>(-L,nH(-L,n') 

( !) 
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