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Discrete and Continuous Interactions in
Charged Particle Transport Theory

In a recent paper,! Hoffman et al. proposed applying the
neutral particle transport code, ANISN, to the calculation of
sputtering vields (inner wall erosion of a controlled thermo-
nuclear reactor). In other words, they solved a fast ion
transport problem by using a DSN method. Bartine et al. made
a similar attempt for electron penetration in several materials.?

As is well known, the scattering cross sections are very
anisotropic for charged particle interactions, so the energy
transfer operator is usually split into two parts. The first one,
as in neutron transport theory, represents rather large energy
transfers (LET) or “discrete interactions,” while the second,
the so-called continuous slowing down (CSD) differential
operator, allows only small energy transfers (SET). As pointed
out by Hoffman et al., this division is quite arbitrary, and,
in principle, a pure integral operator could include all kinds of
interactions. Unfortunately, such an approach would require
too many Legendre scattering kernels.

Generally, the CSD term is obtained by using a Taylor ex-
pansion for the flux in the SET operator. As shown by
Greenspan and Shvarts,® this procedure is correct for uniform
space distributions of particles. For space-dependent prob-
lems, another approximation is needed, and usually it is
assumed that no deflection occurs during a ‘“‘continuous
interaction.” This last approximation is inconsistent because
a CSD should result from a continuous deflection.

It is known, in plasma physics, for example, that a full
continuous interaction approximation leads to the so-called
Fokker-Planck operator of the following form:
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when the thermal motion of target particles can be neglected.?
Then, in the general case, the SET operator should have the
same form as Eq. (1) and should not reduce to the first term
only. This can be derived directly from the Boltzmann equa-
tion.

For plane geometry, one can write®
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LETTERS TO THE EDITOR

In the above equations, u and p; are the cosine of the
pitch angle and the cosine of the scattering angle in the
laboratory system, respectively. The standard versions of
DSN codes are based on Eq. (2). The Legendre expansion has
to be truncated somehow; in other words, Z; (E' = E) is set to
zero when [ > [y In practice, for neutron transport problems,
Iy = 5 is a very good approximation. For charged particles, on
the other hand, a large value of Ij; is needed, as shown by
Hoffman et al.,! although they introduced CSD terms in the
formalism. Another strategy is therefore required.

Let us call m, and m, the masses of test particles described
by Eq. (2) and field particles (targets), respectively, assumed
to be at rest with a density »,. Then, the Legendre scattering
kernels are given by?
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for aF' < E < E' and cancel elsewhere. In this equation,
T = E' - E represents the recoil target energy, and
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is the parameter given by Hoffman et al.! In the above equa-
tion, the differential microscopic cross section o(E',u.) de-
pends very much on the value of u,, the scattering angle cosine
in the center of mass. Because of the energy angle correlation,
one has®
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Let us define a small scattering angle 6., below which
interactions can be considered as continuous. The correspond-
ing energy transfer [Eq. (6)] is

T, =7FE withy, =(1 ~cosecm)i’21<<1 . 8)

The 7, parameter is expressed here as a function of the
scattering angle in the center of mass. The choice of 6., can
be roughly determined from the shape of
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which is a very sharp function near u, = 1.
By using these definitions, the transport equation [Eq. (2)]
can be written as follows:
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with the SET operator,

E+Tp,
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In this last expression, the integrand is a smooth function
of E' over the small interval (E,E + T,,), and therefore a first-
order Taylor expansion around E can be performed while the
T value is fixed:
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With the new variable T, Eq. (9) becomes
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From Eq. (5), one sees that.
Z(E,T) = ZsoE, T) P[]
where y;, is given by Eq. (7) (£’ = E). Since T < T, is small,

Py(uy) can be approximated by a linear function of 7. (This is
not true, of course, for Z;, which is almost singular for
T'=0.) A first-order expansion of P(u;) gives
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From the definition of Legendre polynomials,
(1 = )Py () — 21 By(w) = =10 + 1) Py(u)
and P;(1) =1, one finds
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Finally, the scattering kernel can be approximated as
s (E,T) = 2, o(E, T) [1 -~ 1) = %] for Tsmall |

and Eq. (10) becomes
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Here, S(F) is the usual stopping power restricted to SET
interactions, and Zgpr(E) is the corresponding macroscopic
scattering cross section. In the above derivation, the 72 terms
have been neglected.

The quantity [;(x, E) can now be introduced in Eq. (2 bis).
By using Eqs. (11) and (4b), the transport equation takes the
final form:
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As expected, the Fokker-Planck operator appears naturally
when the continuous interactions are correctly handled.

The scattering cross section, Zgpr, has been eliminated
from the formalism. This is very important because it takes a
large value for Coulomb interactions (it goes to infinity for un-
screened potentials). In the left side of Eq. (15), the total
cross section involves only the LET part of all scattering
processes (discrete interactions) and of course all absorptions.

Let us consider a few cases:

1. The test particles are fast ions. For electronic interac-
tions (m, = m,), the ratio m,/4m, is very small, and the deflec-
tion operator is negligible. Moreover, all energy transfers can
be considered as small, 8., = 7, ¥, =7, [Eq. (8)], and no LET
term occurs in Eq. (15). For nuclear interactions, on the
other hand, m,/4m, can be large, when, for example, light
ions are impinging on a heavy material (m,/m; >> 1). In this
case, the deflection term has to be kept in Eq. (15). This is
probably the reason why Hoffman et al. have met numerical
difficulties for protons incident on a nickel target.

2. The test particles are electrons. Here, also, in most
cases there is a need for a “deflection operator.” Some of the
discrepancies between experimental data and ANISN calcula-
tions could be explained in this way.?

NUMERICAL ASPECTS

The usual DSN codes are not able to solve Eq. (15), al-
though the method itself should. allow such a Fokker-Planck
operator. For example, a finite difference scheme for y deriva-
tives will lead to connections among three directions, and
inner iteration schemes can incorporate such a scattered
particle source.

Another problem arises when the multigroup form of
Eq. (15) is derived. After integration over the range (Eg, Egy),
the CSD part of this equation becomes

S(Eg-1)d(x, Egoy, 1) — S(Eg)p(x, Eg,u) .

The first term represents particles slowing down from group
(g — 1) to group (g), and the second term the removal from
group (g) to group (g + 1). One must then write this expres-
sion as proposed by Greenspan and Shvarts3:
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with
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in which ¢(x, E, ) is approximated by a known weighting
function W(E) over the interval (Eg,Eq ).

The simplest way is to assume that both ¢(x,E,.;,u) and
¢(x,E,,u) are proportional to the group flux ¢g(x, 1), as done
by Hoffman et al.' Unfortunately, by doing that, the CSD
process is smeared out, since connections between group
fluxes are absent in the formalism.
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On the other hand, the deflection term in Eq. (15), which
does not involve any slowing down, can be expressed only as a
function of ¢g(x, u):
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In the framework of a general study on jon beam-plasma
interactions, we intend to develop a DSN code based on the
multigroup form of Eq. (15) by keeping only the Fokker-

Planck operator. This will show how to handle the deflection
operator

I

5 (-85,

from the numerical point of view. The conclusions to be
drawn should keep their meaning when discrete interactions
are introduced.
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