
Letters to the Editor 

Eigenvalues of the Neutron Transport 
Equation with Anisotropic Scattering 

In a recent paper,1 Dawn and Chen have discussed the 
existence of discrete eigenvalues of the one-group neutron 
transport equation with anisotropic scattering. Their treatment 
refers to eigenvalues v for a spatial dependence of exp(-x/v) in 
a medium with a stationary field and characterized by c, the 
number of secondary neutrons per collision. Such a system is 
equivalent to a time-dependent one, where the spatial varia-
tion is described by the buckling approximation. Apparently, 
the authors have not been aware of the fact that such time-
dependent systems have been treated in several works2"8 

and that detailed numerical results are available. 
A comparison of the work by Dawn and Chen1 with the 

works of the present author4"8 can easily be done by noting 
that the spatial dependences in the two cases are related by 
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where ls is the mean-free-path for scattering and B (or B2) 
denotes the buckling. The generalized decay constant is related 
to c by 

(2) 

The Legendre coefficients /„ used by Dawn and Chen1 are 
identical to our bn. 

Let us first discuss the case of linear anisotropy with 
0 < f>! = f < j . The curves of the decay constant versus buck-
ling in Fig. 1 may be compared to the right-hand part of Fig. 3 
in Ref. 1. It should be noted that the eigenvalues in Bls or v 
always occur in pairs with plus and minus signs. This means 
that two such eigenvalues will coincide on curves plotted as 
in Fig. 1. The complete equivalence between the results ob-
tained in Refs. 4 and 1 of the eigenvalues Bls and v is seen 
from Table I. The region c > (1 + 1 /^) is not discussed by 
Dawn and Chen.1 As can be seen in Fig. 1, there are two 
pairs of real eigenvalues here, but if bx > ir2/48 = 0.2056 they 
may go over into complex eigenvalues instead. The limit 
bx = 7r2/48 and the existence of complex eigenvalues already 
was derived by Davison.9 Numerical values of the real4 and 
complex6 eigenvalues in this region have been given in great 
detail. It is therefore quite clear that region II in Fig. 3 of 
Ref. 1 contains four eigenvalues, either purely imaginary or 
complex. 

In a similar way Fig. 4 of Ref. 1 may be compared to 
Fig. 2 in Ref. 7, and it will be seen that the eigenvalues calcu-
lated in Ref. 7 are in accordance with the predictions in 
Ref. 1. 
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TABLE I 

Comparison of Eigenvalues in the Stationary Case (Ref. 1, Fig. 3) and Time-Dependent Case (Fig. 1) 

Stationary Case Time-Dependent Case 

Region Types of Eigenvalues Region Types of Eigenvalues 

0 < c < 1 2 real A < 0 2 imaginary 

1 < c < ( l + 1/36,) 2 imaginary 0 < A < ( l + 3 j 2 real 

( 1 + l/3bi) < c < ( 1 + l / b i ) 
2 real 
2 imaginary ( i + W ) < A < ( i - 6 i ) 

2 real 
2 imaginary 

( 1 + 1 I b i X c 
4 imaginary or 
4 complex ( l - ^ K A 4 real or 

4 complex 
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Fig. 1. The generalized decay constant as a function of buckling for 
various degrees of linearly anisotropic scattering. 

Also the more general Figs. 1 and 2 in Ref. 1 agree with 
the results obtained in Refs. 7 and 8 (apart from the fact that 
the vertical border lines in Fig. 1 should have been drawn at 
1 Ifi at ±3 instead of at ±4). From Ref. 7 it is clear that re-
gion II in Fig. 2 of Ref. 1 frequently contains four imaginary 
eigenvalues. When they disappear, it is probable that they go 
over into four complex eigenvalues, just as is the case for 
purely linear anisotropy. However, this has not been con-
firmed by calculations. 
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Reply to a Comment on "Eigenvalues of 
the Neutron Transport Equation 

with Anisotropic Scattering" 

The original idea in our paper1 was to give a general 
analytical method to determine the number and the mathe-
matical property (real, purely imaginary, or complex) of the 

discrete eigenvalues of the monoenergetic neutron transport 
equation with anisotropic scattering. Sjostrand's comment2 

suggested that his numerical study on the time-dependent 
transport problem can be compared with our work and his 
numerical result show agreement with our analytical predic-
tion. 

Sjostrand2 also discussed the existence of the complex 
discrete eigenvalues. Just as illustrated in Sec. IV of Ref. 1, 
the difficulty is how to determine the condition on parameters 
c, /,, f2, • . • for the existence of complex eigenvalues, where 
c is the number of the secondary neutrons per collision and 
/i, / 2 , . . . are the Legendre coefficients of the scattering func-
tion. This problem for the linearly anisotropic scattering case 
had been considered by Thielheim and Claussen.3 In Fig. 1 of 
their paper, they give a boundary of the complex discrete 
eigenvalues without showing how to determine such a bound-
ary. A very basic property of the quadratically algebraic 
equation 

x2+2ax+b = 0 , (1) 

may help us to solve this problem. This property is that the 
boundary of the complex roots of Eq. (1), a2 - b = 0, is the 
condition that Eq. (1) has double roots. With this in mind, we 
may ask whether this simple property is true for the present 
problem. That this property is correct for the linearly ani-
sotropic scattering case can be shown as follows. 

The discrete eigenvalues for the linearly anisotropic scat-
tering case are roots of the equation 

A(t>2) = 1 + 3c/((l - c)v2 - c[ 1 + 3/i(l - c)v2]f(v2) , 

= 0 , (2) 
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Fig. 1. Classification of discrete eigenvalues in parameter space for 
linearly anisotropic scattering. 
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