
Letters to the Editor 

On the Quasi-Static Synthesis Method for 
Space-Time Dynamics P rob l ems 

In a recent Note, Hauss and Kastenberg1 presented the 
quasi-static synthesis (QSS) method of solution for space-
time reactor kinetics problems, which blends the concepts 
of the quasi-static (QS) method and the synthesis method. 
In this Letter, I would like to make some observations and 
remarks about the above Note. At the outset, I want to point 
out that the word "Introduction" used in the title of the 
above Note is misleading, as this method was already intro-
duced earlier by myself and Grossman.2 Although the method 
was not formally named in our paper, the essential features 
are identical to the QSS method of Hauss and Kastenberg.1 

There are, however, differences in some of the details that 
I would like to address in the following. 

Essentially, both methods of calculation are based on the 
fact that the principle of the flux factorization technique, in 
the QS method, in which the slowly varying flux shape 
is factored out and calculated less frequently than the rapidly 
varying amplitude function calculated by the "point kinetics" 
approach and the principle of the synthesis method, in which 
the space-time-dependent flux shape at different time points 
is synthesized or blended from some trial functions, can 
together be profitably employed to significantly reduce the 
computation time for a certain class of problems. The dif-
ference in our methods lies in the choice of trial functions 
to generate the "true" shape function. 

In our method,2 after the formal reduction of the QS 
method,3'4 we represented the space- and time-dependent flux 
shape by Eq. (35), i.e., 
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where y ^ „ is the orthonormal eigenfunction of the group 
removal operator Lj satisfying all the interface and boundary 
conditions. The function fj(z.t) is a localized [in the (r,6) 
plane] "pulse" function to reproduce the localized change in 
reactor properties for the problem considered. Thus,_the 
trial functions consisted of satationary eigenfunctions, jfa.n, 
determined a priori and the pulse function,//(z,0, calculated 
using the perturbation formulation at each intermediate time 
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step t" (Fig. 8 of Ref. 2) and used in the calculation of lumped 
parameters p, |3, etc. The mixing coefficients, jZ/, n, are evalu-
ated only at the outer time steps tf and are linearly interpo-
lated in between in the spirit of the QS method.3 This approach 
is best suited and was used for the problem involving only 
localized [in the (r,d) plane] changes in the reactor prop-
erties, since in that situation, the variation in the flux shape 
will be mainly confined to the vicinity of the disturbances 
warranting a more frequent evaluation of the pulse func-
tion fj(z,t) (at the intermediate time steps /,"), with a rather 
slow change in the bulk of the reactor core away from the 
location of the disturbances justifying an infrequent calcula-
tion of jZk,n ( a t outer time steps t f ) . 

Thus, the problem of solving for the space-time-dependent 
shape function was reduced to evaluating fj(z,t) at different 
times and solving for the mixing coefficient jZk,n that satis-
fied algebraic coupled equations at a given time point (ap-
proximating the time derivative by the usual implicit finite 
difference as in the "improved QS method"3). Thus, the 
computational effort was reduced tremendously even while 
obtaining a qualified three-dimensional shape function solu-
tion specific to the problem considered. 

In contrast, Hauss and Kastenberg1 have employed the 
calculated flux shapes at fixed outer time steps (see Fig. 1 of 
Ref. 1 or Fig. 8 of Ref. 2) as the trial functions that are 
blended to obtain the true flux shape in between these time 
points. This approach has several merits and demerits vis-
a-vis our approach.2 First, since the shape function at the 
outermost time step (7}+1 in Fig. 1 of Ref. 1) is calculated 
using the extrapolated reactor composition at that time, it 
is likely to be very accurate for problems where external 
changes in reactor properties (i.e., due to externally affected 
changes in cross section, etc.) dominate over the changes due 
to feedback during the course of the transient. This is obvious 
due to the fact that when the reactor properties are extrapo-
lated in time, one does not have a good knowledge of the 
changes in the properties due to feedbacks that are not as yet 
evaluated. On the other hand, for the problems where the 
externally affected changes in the reactor properties are rather 
small and the transient proceeds "on its own," such an extrap-
olated shape function calculation can be in gross error and 
will no longer bracket the true shape. This just means more 
outer iterations are required to arrive at the convergent solu-
tion, if it is at all possible to do so. 

This is where the computational effort in the approach 
of Hauss and Kastenberg becomes more expensive and the 
advantage of the "synthesis" part in the QSS is lost, since, if 
the number of outer iterations is increased, the method of 
Hauss and Kastenberg will approach the conventional QS 
method3 in terms of computational effort, since we recall 
that the conventional QS method is nothing but one partic-
ular type of blending of two outer shapes, i.e., linear interpo-
lation in time. Thus, the only point made in Ref. 1 is that 



instead of using a linear time interpolation of the shape 
function within an "outer" time step (as in the QS method), 
the interpolation, i.e., the ratio (Z/+J/Z/) at time rn in Eq. (7) 
of Ref. 1, 

nr,T„) = ZI*l(r)+ZI+l*I+i(r) , (2) 

is determined variationally. The full shape function is com-
puted only at the outer time steps as in all QS methods, the 
lumped parameters being calculated using the interpolated 
shape. The Hauss and Kastenberg method does not prescribe 
how to compute the full shape function at these outer time 
steps; apparently, in the numerical example finite difference 
is used. Hauss and Kastenberg claim two advantages: 

1. faster convergence of outer iterations 

2. use of coarser outer meshes. 

It seems that point 2 is the primary motivation, although it 
is not stressed by Hauss and Kastenberg. When strong feed-
backs are present, point 1 is not obvious in the light of the 
earlier remarks made in this Letter. In fact, in the presence 
of strong feedbacks, all the QS methods, including their 
synthetic variations,1"3 will suffer from poor convergence and 
increased outer iterations. 

In the same light, one more observation is to be made. 
Hauss and Kastenberg make a claim (p. 328 of Ref. 1) that the 
new interpolation variationally determined not only gives 
better values of lumped parameters (as we note) but also 
could provide a "next-iterate guess" of the flux shape on 
again reaching 7) + 1 , thus reducing the number of subsequent 
space-dependent calculations required at this time. Since the 
outer extrapolated shape ^ / + 1 ( r ) at 7}+1 is incorrect due to 
the lack of proper accounting of feedback effects, then by 
"refitting" the function by using incorrect shapes at time 
7}+ 1 , one cannot obtain a correct shape, especially if the 
correct shape is not bracketed, as will be the case in the 
presence of strong feedbacks. In the numerical example given 
by Hauss and Kastenberg, they obtain a very good conver-
gence in the shape on reaching the outer time step 7}+ 1 , 
obviating the need for outer iterations altogether, mainly 
because the nonlinear feedback effects were ignored. 
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Reply to " O n the Quasi-Stat ic Synthesis 
Method for Space-Time 

Dynamics P r o b l e m s " 

Having reviewed the Letter by Doshi,1 we felt it necessary 
to reply to several erroneous points presented there. First, we 
take exception with Doshi's claim that the essential features 
of the method presented in a paper by him and Grossman2 are 
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identical to those of the quasi-static synthesis (QSS) method.3 

Aside from the fact that both methods employ a combination 
of flux-factorization and synthesis techniques to solve the 
space-time equations (as do a few other methods, notably 
Refs. 4 and 5), there is very little that the two methods have 
in common. In fact, as is pointed out below, it is the very 
differences between the two methods that should inevitably 
lead to the success of the QSS method as a general approach 
for solving space-time kinetics problems. Furthermore, Doshi's 
statement that the essentials of a "quasi-static (QS) synthesis" 
method were originally introduced by him and Grossman is 
in error. The method finds its origin in the linear interpolation 
technique of the improved QS method developed by Meneley 
et al.4 In this technique, the rapidly varying amplitude func-
tion is calculated via point kinetics, while the space-time-
dependent flux shape is blended (in an a priori manner, i.e., 
linearly with respect to time) from trial shapes calculated at 
the inner and outer bracketing time steps. Besides this ap-
proach, Kessler5 also employs a method that relies on a combi-
nation of the ideas of the QS and synthesis methods, although 
in a somewhat reversed sense. In Kessler's method, time-
discontinuous synthesis is used to determine the rapidly 
varying time-dependent amplitude functions, while flux shapes 
are obtained from an iterative solution of the QS shape func-
tion equation. Thus, it should be clear that the essentials of 
a method that somehow combines the ideas of flux-factoriza-
tion and time-synthesis have existed prior to the paper by 
Doshi and Grossman. In this regard, it should also be pointed 
out that the title of our Note,3 "Introduction of the Quasi-
Static Synthesis Method for. . . ," is not meant to imply an 
introduction of the general idea of combining QS and syn-
thesis methods, but rather the introduction of the specific 
method (details included) proposed in the Note. 

It is incorrect to compare the method developed by Doshi 
and Grossman to the QSS method, since the aims of the two 
methods are of a completely different nature. The former 
technique is specifically tailored to solve a restrictive (if not 
unrealistic) transient, that is, one in which the reactor proper-
ties over all but a small segment of the core remain unchanged 
for the duration of the transient. The QSS method, on the 
other hand, is an attempt at developing a general approximate 
method that is applicable to a wide range of space-time dy-
namics problems. However, since Doshi appears to be repre-
senting the method developed by him and Grossman as a 
general approach for solving the space-time equations, a 
brief reexamination of the method is in order. The class of 
expansion functions that Doshi chooses to describe the time-
dependent flux shape over the bulk6 of the reactor core 
consists of the eigenfunctions of a single operator equation, 

LjjQk.n = A, n , da) 
where 
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The D,'s and Z / s in this single equation are those correspond-
ing to the initially critical reactor state. The main problem 
with this technique is in being able to accurately represent 
flux shapes that occur during the transient using a reasonable 
number of expansion functions. This is especially true if 
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