
Letters to the Editor 

On the Factorized Kernel Approach for 
Solving Multidimensional Neutron 

Transport Problems 

In a recent paper, Bassini et al.1 have developed the 
factorized kernel approach for solving neutron transport 
problems in two and three dimensions. The method involves 
the expansion of total flux and other higher order spherical 
harmonic moments of angular flux in terms of Legendre poly-
nomials of the reduced spatial coordinates, x/a, y/b, and z/c 
where 2a, 2b, and 2c are the dimensions of the parallelepiped. 
The method can be viewed as an extension of Carlvik's 
method2 for plane geometry, which was shown by Mika and 
Stankiewicz3 to be equivalent to the jN method developed by 
Asaoka,4 Kschwendt,5 and others. It is therefore understand-
able that the method described in Ref. 1 is closely related to 
Sahni's work6 on the integral transform method for multi-
dimensional problems, which was restricted to isotropic 
scattering. In an attempt to treat the anisotropic scattering, 
Bassini et al.1 have generalized Eq. (7) of Ref. 6 
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to the values of n > 2 . Thus we have the equation1 
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where /'"erfc(x) is the «'th repeated integral of the function 
erfc(x). Equation (1) cannot really be generalized for n > 2 
because the singularity of the kernel on the left side when 
r equals r' cannot be integrated, and hence its Fourier 
transform cannot be defined. Moreover, this generalization 
is not needed for treating anisotropic scattering because such 
terms basically arise out of the expansion of the spherical 
harmonics 
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where the argument is a unit vector. This can be seen very 
clearly if one considers the linearly anisotropic case first. 

Let the transfer cross section 2 S ( 0 ' O) be given by 

2 , ( 0 ' - > 0 ) = ^ (1 + 3 6 , 0 - 1 1 ' ) . (3) 

The source-free, stationary, monoenergetic integral trans-
port equation for a single homogeneous convex medium with 
vacuum boundary conditions gives1 
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This equation must be solved for the criticality of a region v, 
A being the eigenvalue. The extension to source problems is 
relatively simple, but the requirement of a single homogeneous 
medium, so that the total cross-section 2 is constant, is 
essential, and the multiregion problems have to be treated 
through interface boundary conditions. 

Substituting Eq. (3) in Eq. (4), one can get two coupled 
integral equations for total flux <j>(r) and current J(r), defined 
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The essential idea of factorized kernel approach is to cast 
these equations in a form so that the kernel appears as a 
product of three functions, each depending on the pair of 
coordinates (x,x') , (y ,y ' ) , and (z,z'). This factorization is 
much clearer if we work in the k space (the variable for 
Fourier transform) rather than in the coordinate space r. For 
this purpose we introduce the Fourier representation of the 
kernels. 
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In Eq. (10), I is the unit dyadic. The presence of k'2 in the 
denominators in Eqs. (8), (9), and (10) prevents the factoriza-
tion mentioned earlier. To remove this difficulty, one first 
effects the transformation s- = 2/ju, and then uses the integral 
representation 
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For Eq. (10) , one also has to use the relation 
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With these transformations we have the following representa-
tions for the kernels: 
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has been shown to be factorizable for a rectangular parallele-
piped and a finite cylinder,6 while 

P3(M2) = ^ [Pi(M2)-P2(M2)] , 
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It should be remarked that the integration over u in 
Eqs. (16) and (17) can be carried out by the Gaussian quad-
rature coefficients generated for the non-negative weight 
functions pu p2, p3 , and p4 , respectively. Bassini et al.1 have 
mentioned the improved techniques for generating the quadra-
ture coefficients. We have also, in more recent work, fol lowed 
techniques7 similar to those given by Stroud.8 

It should also be noted that for the criticality problem 
(though some of the remarks are true in general) of a rectangu-
lar parallelepiped of dimensions ~a < .v < a\ -b < v < b; 
-c < z < c, the flux <t>{k) has to be expanded in even order 
spherical Bessel f u n c t i o n s , corresponding to even order 
Legendre polynomials of x/a, y/b, and z/c. The current Jx(k) 
will involve odd order spherical Bessel functions of kx and 
even order for ky and kz. Similar remarks hold for Jy(k) and 
Jz(k). After substituting such expansions in Eqs. (16) and (17), 
one obtains the matrix equations for the determination of 
expansion coefficients. The matrix elements of these equa-
tions, apart from an integration over u, can be evaluated 
analytically, though it involves intricate mathematical manipu-
lations. In fact, the potential of this method for treating the 
anisotropic scattering was noted much earlier,9 but it was also 
realized that to carry out the determination of matrix ele-
ments requires real courage. To this end the authors of Ref. 1 
have made a very useful and significant contribution. 
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The kernels in Eqs. (13), (14) , and (15) are now in the factor-
ized form. On taking the Fourier transforms of Eqs. (6) and 
(7) over the volume, v, one gets 
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