
Letter to the Editor 

On Rafalski's Solution to the Albedo Problem 

In an article in this journal, Rafalski1 has considered the 
monoenergetic transport problem of computing the proba-
bility that a neutron will be reflected if it is perpendic-
ularly i n c i d e n t upon a semi-infinite halfspace. The 
halfspace is assumed homogeneous with isotropic scatter-
ing. Rafalski's method of solution is to approximate the 
solution of the integral transport equation by partially 
assuming the flux to be in an asymptotic distribution. He 
found that the resulting simple expression for the albedo 
was quite accurate for highly absorbing systems, but that 
the accuracy became worse as the system became less 
absorbing. This is a somewhat unusual result since gen-
erally any approximation based on the assumption of an 
asymptotic distribution for the neutron flux is most ac-
curate for weakly absorbing systems. 

In this note we would like to point out the interesting fact 
that Rafalski's approximate solution to the normal beam 
albedo problem is, in fact, an exact transport solution to 
the albedo problem for another simple incident distribu-
tion. This observation leads to a very simple explanation 
as to why Rafalski's results are most accurate for highly 
absorbing systems. Consider an incident neutron flux of 
the form 

<p(z, n ) l z = o = ( 1 - liv)'1 , M > 0 , ( 1 ) 

where v is the positive root of 

r - - ( fcf ) • o) 
with c representing the mean number of secondary neu-
trons per collision. The remaining notation is standard. 
The exact transport solution for the flux in the halfspace is 
then given by 

(p(z,n) = (1 - pu)'1 exp(-wr) . (3) 

Equation (3) is obviously the solution for the flux since it 
satisfies both the integro-differential transport equation 
and the boundary condition, and the solution to the trans-
port equation is known to be unique.2 The probability of 
reflection, i .e. , the albedo A, is then given by 
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Equation (4) is an exact transport result for the incident 
distribution given by Eq. (1). 

Rafalski's approximate solution to the normal beam 
problem is 1 

A (Rafalski) = 1 - (1 - c)/{ 1 - c[v + ln( l + v)]/2v] . (5) 

Use of Eq. (2) to eliminate c in Eq. (5) yields 

A (Rafalski) = ln(l + v) - i>/[ln(l - v) + v] (6) 

1 P . RAFALSKI, Nucl. Sci. Eng., 19, 378 (1964). 
2K. M. CASE and P. F. ZWEIFEL, Linear Transport Theory, 

Addison-Wesley, London (1967). 

Comparison of Eqs. (4) and (6) shows that Rafalski's ap-
proximation to the normal beam problem is identical to the 
exact solution corresponding to an incident distribution 
given by Eq. (1). Having established this identity, it is 
clear why Eq. (6) is most accurate for highly absorbing 
systems (c ~ 0). For small c, the parameter v is very 
close to unity and the distribution given by Eq. (1) is very 
peaked near p = 1, i.e., it appears almost as a normal 
beam. Hence, for small values of c the problem for which 
Eq. (6) is an exact result is very nearly the normal beam 
problem. On the other hand, for a highly scattering system 
(c ~ 1) the parameter v is almost zero and Eq. (1) repre-
sents an almost isotropic incident distribution. In this 
case one would expect Rafalski's result to be a relatively 
poor approximation to the normal beam albedo. However, 
it should give a good approximation for the albedo cor-
responding to an isotropic incident distribution. This is in 
fact the case. For c = 0.99, Eq. (6) gives 1 -A = 0.207 
whereas the exact solution1 to the normal beam problem is 
1 -A = 0.247; however, the exact solution for an isotropic 
incident flux3 is (1-A) = 0.205 which agrees very well with 
Rafalski's result. A simple expression for the albedo 
which is accurate for both the normal beam and isotropic 
incidence problems for all values of c is available in the 
literature.4 
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