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A Plausibility Argument by B. Davison for the 
Completeness of the Elementary Solutions to the 
One-Dimensional Neutron-Transport Equation* 

Recently the author stumbled upon a proof, given by the 
late B. Davison in a declassified Canadian report1 MT-112, 
that the elementary solutions to the steady-state monoen-
ergetic one-dimensional neutron transport equation form a 
complete set (in a sense defined below)2. The proof con-
stitutes Appendix B of this report, which is dated January 
31, 1945. A more general and much more useful derivation 
of this completeness property has since been supplied by 
K. M. Case3. Case's derivation is more useful because it 
is constructive; i.e., the method by which the expansion 
coefficients are to be calculated is displayed, Davison's 
derivation is nevertheless of interest for several reasons. 
First, it is far more intuitive than Case's derivation, which 
rests upon the solution to a certain class of singular inte-
gral equations; second, so far as the author is aware, it is 
the earliest published reference to this interesting subject; 
and finally, the method of proof is of interest for its own 
sake—as it suggests a novel method by which infinite slab 
problems may be treated. Because of the general unavail-
ability of MT-112, Davison's proof is presented below in 
its entirety, with only some of the equation numbers 
changed. For completeness, we also paraphrase Davison's 
derivation of the singular solutions, which is found in the 
body of his report. Davison precedes his derivation with 
the statement, "This family of eigensolutions has been 
already discussed by various authors before, but in the 
absence of any definite record of these discussions it will 
be more convenient to derive this family of eigensolutions 
anew." 

We write the transport equation in the form 

„ + = I-T d»> (i) 

where a = 1 - c, and c is the mean number of secondaries. 
Trying a separable solution, 

*(*,M) =%(z)f(n), (2) 

in which / is to satisfy the normalization condition 

/ . V M du = 1, (3) 
we deduce that 

^ a iogj^) + 1 J (4) 

Thus, 

= const • exp(vz) (5) 
(note that Davison's v is the negative reciprocal of Case's), 
and 

/(m) = i y £ t(1 +itiI/)~1 + c ( 6 < i L t + i;"1)] • (6> 

*Work performed under the auspices of the USAEC. 
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Although Eq. (5) is a rigorous result of the theory of distri-
butions4 , it was written by Davison without comment at a 
time when the theory of distributions was in the process of 
being developed; presumably in the spirit that when one 
divides by jj, + v'1 one can pick up a delta function [because 
(fj, + ir1) 6 (fji + v'1) is zero everywhere]. Moreover, if 
(1 + nv)'1 is not integrable over the range in question, one 
naturally takes the principal value. Now suppose that 
v = Vq, where is in neither of the intervals (- - 1), 
(1, Then Eq. (3) implies that v0 is the solution of the 
equation 

1 - ^ T l 0 g T^vo 9 (7 ) 

if v is in one of the above intervals, then Eq. (3) implies 
that 

/ \ 1 1 ~ a 1 V + I ( o \ 
C{V) = 1 ' l o g 7^1 ' (8) 

It is well known that there are precisely two roots of Eq. 
(7), differing only in sign; thus we have derived two dis-
crete eigensolutions to Eq. (1), plus a continuum of eigen-
solutions for ve [(-00, -1), (1, °°)]. 

Davison's completeness proof follows. 
"The fact that in the 'plane case' the formulae (2) to (8) 

give a complete set of eigensolutions is known, but its 
proof does not seem to have been recorded in any report, 
and therefore, it would appear preferable to give the proof 
of this fact. This is the purpose of this present appendix. 

"The statement that the family of eigensolutions given 
by (2) to (8) is a complete set of eigensolutions for the 
plane case, means that any solution valid in an arbitrary 
infinite slab ai <z <a2 with arbitrary boundary conditions 
at its surfaces z = ai and z - a2 can be expressed in terms 
of the eigensolutions given by (2) to (8). Now a solution 
valid in an infinite slab ax <z <a2 can always be thought of 
as the angular distribution arising from two anisotropic 
plane sources situated at z = ai and z = a2; and without any 
loss of generality we can put = 0 and replace a2 by a, 
thus considering the infinite slab 0 <z <a. Next the angu-
lar distribution in this slab can be considered as the 
superposition of the angular distribution in the half space 
z > 0, due to some appropriate plane source at z = 0, and of 
the angular distribution in the half space z <a, due to some 
appropriate plane source at z = a. This for the case of 
a ^ 0 (no multiplication) can be seen, say, from the follow-
ing cons iderat ions . Let q0i(\j) be the angular distribution 
of the particles emitted by the (original) plane source at 
z = 0, and let <loz(\x) be the angular distribution of the par-
ticles emitted by the (original) plane sources at z = a. Let 
also &(0)(r,ii) be that angular distribution in the half space 
z > 0 due to the plane source q01 ( f j ) which remains bounded 
as z tends to infinity. This angular distribution will differ 
from the correct angular distribution in the slab, i), 
say because it does not contain the contribution from the 
plane source #02(ju) and because it contains also the par-
ticles coming from the region z > a, which in the correct 
angular distribution ^(r,fj) would be absent. These parti-
cles can be replaced by particles coming from some aniso-
tropic plane source guifd say, situated at z - a. Put now 
tfiOx) - £o2(n)-0n(n) and let be that angular dis-
tribution in the half space z <a due to the anisotropic plane 
source qi (jz) situated at z = a, which remains bounded as z 
tends to minus infinity. This angular distribution ^ (1 ) (r,ji) 
will differ from the correction -^<0)(r,/i)} which should 

4M. J. LIGHTHILL, Introduction to Fourier Analysis and. General-
ised Functions, Cambridge, London (1958). 
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be applied to ty(€)(r,fji) in order to obtain the correct angu-
lar distribution in the slab, in that respect that ^ ( r , ^ ) c o n -
tains also the particles coming from the region z < 0, while 
the true correction to be applied to ^(d)(r,jLi) should not con-
tain those particles. This however can again be corrected 
by introducing an additional plane source q2 (/JL) at z = 0 and 
constructing the angular distribution due to this plane 
source in the half space z > 0. We can proceed in this 
manner indefinitely. For a ^ 0 (no multiplication) this pro-
cess is obviously convergent, since choosing for ju) 
that angular distribution which remains bounded for z tend-
ing to plus (or minus) infinity, we safeguard that this angu-
lar distribution does not contain any particles coming 
directly or indirectly from infinity, but contain only the 
particles coming directly or indirectly from the source, 

Of these particles only a certain fraction can pen-
etrate beyond the "natural extent" of the slab (i.e. into the 
region z > a for an even n or the region z < 0 for an odd n) 
as for a > 0 some fraction of the particles will be lost 
through absorption, and whether a > 0 or a = 0 some frac-
tion will be lost by escaping through the open surface (z = 0 
for an even n and z = a for an odd n). Thus the number of 
particles which should be neutralized by the source q„+1(fj), 
and consequently the total strength of the source qn+1(iJL) 
cannot exceed some fixed fraction of the total strength of 
the source #„(ju) for n ^ 1, so that the series <frm)(r,\j) 
should converge at least as a geometrical progression. 
Thereby the series 

OO 

j C *<«>(r,ju) =^(r,ju) (B.L) 

will give the correct angular distribution in the slab, while 
the series 

oo 

^E *<2»>(r,n) = (B.2) 

will give an angular distribution in the half space z > 0 and 
the series 

OO 

EQ^<2» + 1)(r,/i) = (B.21) 

say, will give an angular distribution in the half space 
z <a. And the relationship 

* ( r , ju) = *+(r,ju) + ( B # 3) 

confirms our statement that any angular distribution in an 
infinite slab can be thought of as a superposition of angular 
distribution in two half spaces. Therefore to establish that 
the family of eigensolutions of the transport equation for 
the 'plane case' given by (2) to (8) is complete it is suffi-
cient to establish that the bounded solution in the half-
space z > 0 due to an arbitrary plane source at z = 0 can be 
built out of the eigensolutions (2) to (8). This can be seen 
at once as follows. For the bounded solution in the half 
space z > 0 (meaning the solution in which the density is 
bounded for z + but not necessarily bounded near 
z = 0) we can easily derive from the transport equation the 
inhomogeneous integral equation for the density. Solving 
this equation by Wiener-Hopf method, and changing the 
paths of integration we can always represent the resulting 
expression for the density in the form 

%(Z) = A e~uoz + f°° F(v) e~uz dv (B.4) 

so that the density in our problem is the superposition of 
densities corresponding to the eigensolutions (2) to (8). On 
the other hand while we are dealing with a stationary (time 
independent) solution in a half space, possessing a bounded 
density as z tends to infinity, the complete angular distri-
bution is uniquely defined as soon as we are given the law 
of density variation and to obtain this unique angular dis-
tribution we can, for instance, superimpose the angular 
distribution corresponding to the densities appearing in 
(B.4) and obtain 

= AfVQ{ii)e'"(f + f™ F{v)fv ([i)e-vzdv (B.5) 

in which fVQ(ix) a n ( i fv(y) a r e given by (6) to (8). Returning 
to the case of an infinite slab we shall obviously have, 
instead of (B.4) the expression 

%(z) = A+e~voz + A'ev°z + P° F\v)e"vz dv 

+ /" F~(v)evz du (B.6) 

with the corresponding modification of the formula (B.5). 
"In the entire above argument we were assuming that 

a ^ 0. If a is negative the integral equation for the density 
possesses periodic eigensolutions and the argument which 
has lead us to the splitting of (B.3) will break down in two 
respects. Firstly the bounded solution in a half space 
satisfying the given boundary conditions on its limiting 
plane is no longer unique, and, if we pick one of these 
bounded solutions somehow, the process described in con-
nection with (B.3) need no longer be convergent. Also, for 
a < 0, there exists for any fixed value of a, an infinite set 
of the value of a (critical values of thickness) for which the 
solution for the slab with the given plane sources at its 
boundaries may be either non-unique, or non-existent 
altogether. However, assuming beforehand that we are 
dealing with a case in which the solution exists and select-
ing at each step the appropriate one among the bounded 
solutions in the half space involved, we could again prove 
the possibility of the representation (B.6), and consequently 
the completeness of the family of eigensolutions (2) to (8) 
for the plane case. We shall however refrain from going 
into detaU in this argument, as it is fairly obvious from the 
general considerations that once the family (2) to (8) i s 
complete for a ^ 0, it should be also complete for a < 0." 

Although one could question whether the extension of the 
results to the case a < 0 is really "fairly obvious," the 
remainder of Davison's proof is surprisingly clear, consid-
ering the subtlety of the theorem. It is interesting to note 
that implicit in Davison's proof is an approach to finite-
slab problems involving a combination of the method of 
images with the Wiener-Hopf technique. Although this 
would be an iterative technique, so too is Case's method 
which, for finite systems, involves the iterative solution of 
a Fredholm equation. Perhaps the two methods are equiva-
lent! 

W. L. Hendry 

University of California 
Los Alamos Scientific Laboratory 
Los Alamos, New Mexico 

November 2, 1966 




