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Letters to the Editor 

On the Continuous Eigenvalue Spectrum 
of the Neutron-Wave Experiment 

Several recent articles1"3 have made, on occasion, 
misleading references to the continuous eigenvalue spec-
trum arising in the transport theory of the neutron-wave 
experiment. Much of this work can be clarified by consid-
ering plane wave solutions 

f(x,\i9v, t) = F(K;II9 *;)exp(-K x + iwt) 

to the general velocity-dependent Boltzmann equation, and 
then examining the associated eigenvalue problem 

[iw + vZt(v) - K [ I V ] F ( K ; I I , V ) = 

l / * 1 dv'v'Zsiv'-^v^'-t^FiK^'tV') , (1) 
where F(K;II,V) is the eigenfunction corresponding to the 
eigenvalue K . The eigenvalue spectrum of Eq. (l) for 
compact scattering operators S can be analyzed using the 
standard techniques4 to arrive at a continuous spectrum C, 

_ i u> Zt(y) 
\iv |LIE [-1, +1], v e [O,-] 

and a point spectrum P for K T C . Of course for such time-
dependent problems, C becomes an area in the K plane. If 
S should fail to be compact (as it does for crystalline mod-
erators), the scattering operator may contribute an addi-
tional continuous spectrum T to C (see Fig. l). 

In general then, solutions to wave propagation problems 
can be written as a superposition of the eigenfunctions 

f(x,n,v ,t) = £ atF(Kt ;n,v)exp(-Ke x + icvt) 
K£ E P 

JJA(K)F(K;II>V)EXP(-K x+ iwt)dK . (2) 

It is presumed that wave propagation experiments3 measure 
the lowest discrete eigenvalue K0. However, detailed 
investigation of the point spectrum P for several simple 
models has suggested that for sufficiently high u>, a?**, P is 
an empty set, and the spectral representation of the neutron 
density is composed entirely of the continuum eigenfunc-
tions. Furthermore, K O ( W ) may exhibit singular behavior at 
an even lower u>, u>* < u>**, should the point spectrum P 
approach C. 

To investigate this change in the mathematical repre-
sentation of the neutron density, the experimental data of 
Perez and Booth3 have been superimposed on the /(-plane 
structure for graphite (using frequency-dependent coordi-
nates for convenience—see Fig. 2). One observes that the 
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Fig. 1. Eigenvalue structure for crystalline media. Notice 
that r arises from the noncompact elastic scattering operator, 
while the Bragg discontinuity in the total cross-section separates 
the usual continuum C into disjoint domains. For noncrystalline 
media, only the larger areas of C would appear. 

experimentally measured dispersion curve K0(CO) intersects 
the continuum at a frequency v* = (u>*/27r) = 300 cps, much 
lower than heretofore expected. (An interesting confirma-
tion of this results from regarding iu)/vth as an effective 
absorption, and then comparing its value at cu* to some 
preliminary calculations5 of 2Jth for the diffusion length 
experiment in graphite. Both estimates agree in the value 
of 2*th= 0.008 cm"1.) 

Of course much of the experimental data have been 
obtained for u> > u>*, but this is analogous to pulsed-neutron 
experiments in graphite which have yielded X > A*. 
Experimenters obviously appear able to measure data well 
past co* (or X*). It is not so obvious that these data can be 
subjected to the usual types of analyses; e.g., the calcula-
tion of the coefficients in a U 2 N or ( B 2 N ) expansion. 

For this reason it is desirable to study the particular 
case of graphite in detail. Because of the discontinuous 
behavior of crystalline cross sections and the fact that the 
elastic scattering operators S E are not compact, one must 
develop rather special techniques to treat such problems. 
Work has been initiated on a simple model6 which combines 
a separable inelastic scattering kernel with a 6-function 
elastic scattering term 
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L = a-'(cm) 
Fig. 2. Phase velocity v,ph vs attenuation length L for the wave 

experiment in graphite. The shaded regions correspond to the 
theoretical continuum C while the A represent a superimposed plot 
of the data of Perez and Booth3. 

= /3S,-( t;) t;Af (v) w') + Xe(v)6(v-v') 
to study wave propagation in graphite. The goal for such 
work is to provide a suitable procedure for analyzing and 
interpreting the experimental data obtained for U> > GJ*. 
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On the Continuous Eigenvalue Spectrum of the Neutron-
Wave Experiment 

Dr. Duderstadt brings to light in his letter some inter-
esting points in neutron-wave theory which indeed can trap 
the unwary in confusion. Apparent differences in his 
results and mine1 are, at first sight, puzzling. The purpose 
of this letter is to resolve our apparent differences. 

The essential difference between our work is that our 
goals are different. His purpose is to map the eigenvalue 
spectrum of the Boltzmann equation for temporally oscilla-
tory solutions. My purpose, considerably less ambitious, 
was to define an experimentally interesting region of the K 
plane. In this connection, my eigenvalue problem became a 
problem in the scalar flux (the experimentally observable 
quantity). For this reason, my "continuum region" is 
manifestly different from that of Dr. Duderstadt who (like 
Dr. Travelli) considers the eigenvalue problem for the 
vector flux. Moreover, and more important, my condition 
a) < [v ST)min is not meant to indicate a region where l) no 
continuum is found, or 2) a region where all discretum is 
found but rather a region in which, if a measurable disper-
sion law exists, one is certain to find it. 

It would appear from this work, however, that the 
noncompactness of the crystalline moderator scattering 
operator can contribute the line r , which gives rise to 
relatively nonattenuated continuum solutions at lower fre-
quencies than the minimum collision frequency. Although 
the amplitude of this signal may be small, one should see it 
in the far asymptotic region. Experimentally, the first 
Fourier moment2 (i) in a pulse propagation experiment 
should, if there is no continuum present, be a linear func-
tion of z, the detector position. If r is, in fact, present, 
one should see a linear dependence upon z for a range of z> 
followed by a deviation from this behavior at large z. All 
this should take place at u> < (v ST)min. Of course, the 
system would have to be large enough in the z direction to 
avoid reflections (end effects). It is to be hoped that repe-
titions of the Perez-Booth experiment3 in larger systems 
will search for this effect. 
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