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Letters to the Editor

The Albedo Problem and Chandrasekhar’s H-Function®*

In recent notes, Rafalski’ and Pomraning2 have de-
veloped analytic approximations for the albedo problem
(reflection functions) for a semi-infinite medium with iso-
tropic scattering.

Alternative, more accurate analytic approximations to
the albedo problem are suggested below. The directional
and net reflection functions (albedos) are related to
Chandrasekhar’s H-function as in his Eq. (109), p. 124
(Chandrasekhar®, Abu-Shumays®). In particular, for inci-
dent particles with u=po (with respect to the inward normal
to the surface), the net albedo is

R(uo) = 1 - vI=c H(uo), (1)

where ¢ is the number of secondaries per collision, and for
isotropic incidence, the net albedo is

Aig=1- 2 VI [ Hlupdy = 1 - 20, VTG, @)

The desired expressions are obtained by approximating
Chandrasekhar’s® H-function
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by its first iterates H",s (see below) resulting from par-
ticular choices of initial approximations H®,s [Egs. (8),
(11), and (12)] and suitable arrangements of the H-equation®.
The iterative formulae are®®
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The H-function satisfies® H(0) = 1 and
1
% f0 Hpdp =1 - VI<c. (1)
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Equation (4) has the following advantage: If the initial ap--
proximation H'®’ satisfies Eq. (7), then all iterates satisfy
Eq. (7).

' A plausible choice to start the iteration is the average
value of H which, from Eq. (7), is given by

H=H=>01-I), ®)

where 7 = 1, 2, 3 refers, respectively, to the iterative
formulae of Eqs. (4), (5), and (6). This choice leads to

HY =1+ [% (1-vi-c) - Z]p In 1”;” 9)
-1
-t = [1- (- o L (10)
The approximations H =~ H{} are accurate for small ¢ (¢

close to zero). H =~ H{J is the better of the above two ap-
proximations and is remarkably accurate for some values
of ¢ and p. It has an error less than 0.04% for ¢ < 0.2,
less than 0.2% for ¢ < 0.4, less than 0.6% for ¢ < 0.6, and
less than 1.7%for ¢ < 0.8. However, H=Hm is inadequate
for ¢ = 1 (error 7%).

Another plausible choice to start the iteration is a lin~
ear function of p

HY =1+ ay, (11)

with a selected so as to preserve the average value of H(w)
in Eq. (7), i.e.,

i=1,2,3,

a=2(1-T) - 2 (12)
This choice [Eqgs. (11) and (12)] leads to
HY =1 + (L+ap) [%p + (l-ap)%u In 2 ;“] (13)
-1
HY = HY - [1 5 Ly- (l-au)zu In —1-"‘:-—&] (14)

Equation 13 is already superior to the approximations
H =~ HY, having a maximum error of 2% for ¢ = 1; H$ un-
derestimates H for u close to zero and overestimates H for
1 close to 1. (#Y has the opposite behavior.) Consequent-
ly, it supplies excellent approximations to H at p close to
0.5 or 0.6.

Equation (14) is the best when the full range of 0 < ¢ < 1
and 0 s pu<1is taken into consideration. However, it is
slightly 1nfer10r to HY, HY at p close to 0.5 or 0.6 and a
few values of c¢ justifiable as in the case of H HY of the
previous paragraph. Computed values of HY are given in
Table I together with values of H-function from Table XI of
Chandrasekhar®.

Further, of all H, Hf! and H3 supply the simplest ana-
lytic approx1mat10ns whenever integrated forms of the H-
function such as the moments of the H-function are de-
sired. The zero’th moment [Eq. (7)] is given exactly by
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