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Letters to the Editors

Note on the Use of Generalized Functions and the

Poincaré-Bertrand Formula in Neutron

Transport Theory

INTRODUCTION

Recently there has been some confusion about the
proper use of the Poincaré-Bertrand formula in neutron
transport theory"*?, ’

In this note we intend to demonstrate that the angular
Green’s functions, which appear in the literature, do not
require any prescription that is in conflict with the usual
Cauchy principle value integration procedure, as has been
stated in Refs. 1 and 2, nor that the Poincaré-Bertrand
formula admits any ambiguity in its interpretation, as has
been stated in Ref, 3.

We shall stress the proper use of the concept of a
generalized function and of a direct product of two general-
ized functions, We refer to Ref, 4 for the mathematical
background,

THEORY

We introduce the following definitions:

Definition 1 - D, is the one-dimensional space of real test-
functions ¢(v) that vanish identically outside the interval
-1<yps<l,

Definition 2 - D¥ is the space of generalized functions 7'(v)
defined as continuous linear functionals on D; by

(rw), o0 = [1} Tw)9w)ay

for every ¢eD,,

In Case’s method the homogeneous, mono-energetic
neutron transport equation for a medium with plane sym-
metry and isotropic scattering gives rise to an equation of
the form

[1 #)] .o = % o [T T v)ap . (1)

One looks for solutions of (1) that belongs to D¥ Here p
must be considered as a real parameter, -1< y <1. Since
(1) is homogeneous a normalization condition is imposed:
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<j:1 T (v)dp, ¢(v)), = j:l o(v)dv (2)

for every ¢eD,.

Theovem 1 - The solution of equation (1) that satisfies the
condition (2) is

Scv
v-p

T (v) = + My) 6(v-p), 3)
with

~ 1 1+vy
My)=1-5cv In 1=

where (v-u)"* and §(y-p) are defined by
1 S 4t 9
<V-u ’ ¢(V)>1 = 9{-1 V-4 dv= }52)

(61,0 0))= ¢ (1) ,

for every ¢eD,.
The theorem states that for every ¢e D, one has

(i) £ v

- %c I ewyaw,

where Tu(v) is defined by (3).
Note that the generalized function (v-p)™" is defined in
(4) as the principal value of a Cauchy-integral over u.

Jociloe o

o) dv, (4)
i

-1

In (14) the roles of u and v are interchangeable, so that
(v-u)~" considered as a generalized function of p cor-
responds to the functional

Gl o= £ 8.

In order to establish the usual orthogonality relations
we need the concept of the product of two generalized
functions.

Definition 3 - D, is the two-dimensional space of real test-
functions ¢(v,v’) that vanish identically outside the square
S{-1<sv<1, -1<pr st}

Definition 4 - D: is the space of generalized functions
T(v,v') defined as continuous linear functionals on D, by

(T, olo,w), = [J; Tw,v)e(w,v")dvdy!

for every ¢eD,.

Definition 5 - The direct product T(v) X T(v') of two gen-
eralized functions T(v) and T(v') belonging to D¥is the
generalized function defined as a continuous linear func-
tional on D, by
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<T n, ¢y, v’ >2_ <T ", ¢lv,v") > >
for every ¢6D2.

As is proved in Ref. 4, p. 106, the direct product defined
above satisfies the commutative law, i.e. T(v)X T(v')=
T X T(v).

Note that the square of a generalized function is not
defined.

It follows from these definitions that the generalized
function (v-p)”'X (u'-py* for fixed p is defined as a
continuous linear functional on D, by

V% __ s 9,V )> fl i
x{f_‘l‘ v dv'} dv.

However, if one deals with (v-p)~t (v"-p)~! as a function of u
for fixed v and v’ (the X-sign is omitted deliberately), then
this (ordinary) product should be considered as a general-
ized function belonging to D¥ corresponding to the func-

tional
1 _ o _o(wdy
<(V-u)(V'-Ii) ’ ¢(“)>‘ fl - ?

i e. the limit (¢ —0) of the integral over all the values of u
n [-1,+1] with the exception of those values of i for which
Iu-u|<€ or |v'-pl<e. Here v and v’ stand for different
variables that may have the same value.
We now come to the crucial theorem concerning the
orthonormality of the generalized eigenfunctions. A proof
will be given in detail.

Theovem 2 - The generalized functions T#(V) defined in (3)
obey an orthonormality relation of the form

f: p(FT%((ZB—) X M) dp = 1(v) X 8(v*-v),

Nz(p") M
with

NW) = v[X® (v) + Grev)],

where the generalized function 1(v) is defined as a con-
tinuous linear functional on D, by

<1(v),¢(u)>lz j:l o(v)dv

for every ¢eD,,

Proof. The proof requires the verification of the identity
T(v T{u ) ~

<f+ <—’L—)_ ) ”‘5 ¢(V’V')>2

Ni{y) =~ Ni(y')
= <1(V)>< o(v'-v), ¢(V,V’)>z

for every ¢eD,, or equivalently

(I b @@ x 160, au, o),

= (1) % 6(v'-v), NH WA ("(v,0"), (5)
for every ¢eDy o(v,v') = N“%}(V)N-%L(V')a(V,V')-

According to definition 5 and the definition of the general-
ized functions T,U(v) the left hand side of the relation (5)
can be written as
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In the first term in (6) the integral between braces must be
evaluated for all values of v and ', (y,v")eS, including
those values for which v’ = v,

If v' and v have different values it is easy to verify that

1 1 pdpy 3c 1 dp 1 dy
2¢ fl v-w'-p)  v-v' {V' fl T fl V=i

(7-1)

In order to evaluate the integral on the diagonal v’ = v we
recall the Poincaré-Bertrand formula®, p. 57:

fL t L —tM)' dty = -1°F (to,t0)
F(t,t1)
+ [, dh fL il oD) dt, (8)

valid for every function F that satisfies the Hlder condi-
tion with respect to both variables ¢ and {;,. In (8) the
integrals in the second term of the right-hand side must be
interpreted as

li .

A0 f|n-to|>s{n‘% Doctolm, lmtlsn Eb)__ dt} dty;

(t-to)(t1-2)

the integrals in the left-hand side are principal values in
the usual sense. We note that in the integrals of the left-
hand side of (8) the domain of integration extends over the
whole square L X L, In the integrals of the right-hand side
of (8) the domain of integration also extends over the whole
square L X L, from which, however, the point { = ¢, = {, has
been excluded; the contribution from this point is given
explicitly by the term -7%F(fo,t5). Since this term can also
be written as
-r° lim

€—0

f"l"0|$c F(o,£1)5(¢1-to)dts

one may concluded that for #1 =

F@tat 2
fL @ to)(t1 is equal to -7°F (fo,t0)5 (t1-to).

This means that for v = v’

1 pay . 2
X 6(v!-
g.(_+1 g s equal to 7°v X 6(v*-v).

The results (7-1) and (7-2) give the following identity in
D¥:
1ogn _udp
2 1 (v-p)(v'-p)

(7-2)

r
-1(v) x MQ + 1(p1) x MZ),—
v=-v v-v

S i -~ 5(v'-v).

2 (7-3)
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%cz f:v[j:l u'¢(v,v'){¢:1(y—_£—gﬁ_—m}dv']dv +%c j:l v [f: J\(V')tlb(u,u'){fl -;&“x 6(v'—u)du}du]dv

S i e

x c<v-u)du}dv']dv + [ [f_*,‘x(v'>¢(v,v'>{jj‘,‘ BO(-p) X G(V'-u)dn}dv'] av. ©)
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With (7-3) it follows that

%cz fll v [fll v'o(v,v') {SE_J': (V—_%} dv']dv

= _%c j:l v |:5E_+: YAl o(v, V')dV':| dv

v-p!

+1

+5¢ j+l vav) [j:_l V—Vl:' ¢(V,V')dl/'} dv

[j o(v, "o '—V)dv']du . 9)
In the second term in (6) one may interchange the order of
the integrations with respect to g and v'. The integral over

v’ can be evaluated. After the substitution of v for u under
the integral sign one finds:

%c fll v [ :1 x(v')q)(v,v’){j:l T/lj— X é(u'—ﬂ)du} dv'] dv
1C j+l [ff*—l 1% }\gV )

v-v!

] dv. (10)

For the third term in (6) one finds in an analogous way:

%c j: v) [ vio(v,v' {gﬁl ;H—“— X G(V-H.)du}dl/:ldl/
:-;-c f: ) [9‘:: szz_’y ¢>(V,v')du’] dv

The fourth term in (6) gives according to definition 5:

j:l () [fll AW, v") {fll b (v-p) X G(V'-u)du}dv'}du

= [ ww) [ I G(V’-v)q&(u,v')dy’] dv. (12)

With the results (9) - (12) one derives the following
expression for the left-hand side of the relation(5):

(I W) % 16, dis o097,
= fll N@) [fll é(v’—v)q;(v,v')dv’]dv 13)

with N(v) = v[X*(v) +

(11)

(Arcv)?].
According to definition 2 the right-hand side of the
identity (13) is equivalent to
<1(1/ <61/’ N(V ')¢vv>>1,
which, according to definition 5, is in turn equivalent to
QW) x 6(™-v), Niw) N ") 9,0,

This proves the relation (5) for every ¢eD,.

We remark that the relation (5) can also be proved
starting from the fact that the generalized function [T'(v) X
T(v")], is a continuous function of the parameter u in the
sense of Ref. 4, Kap. 1 Anhang 2. This enables one to write
the left-hand side of (5) as

j:l u <(T(v)>< T(V'))w (p(u,u')>2 du,

which is equivalent to

u <Tptl(”)y <T"‘ll(V'); ¢(V5V')>1> 1 dp. .

If one uses theorem 1 and the Poincaré-Bertrand formula
(8) it is not difficult to show that this is equal to the ex-
pression in the right-hand side of (5) for every ¢eD,,
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Having established the results above one deduces all
other formulae that have appeared in the literature, e.g.
the full-range closure relation and the angular Green’s
function, using exactly analogous methods.

DISCUSSION

From the proof of theorem 2 above one concludes that
McInerney’s relation (Eq. (35)) is valid only if v'# v; in
essence it corresponds to our relation (7-1). Therefore its
use in the identity (Eq. (32)) is not justified, since (32)
holds and is used also if v’ = p. The correct form of (35)
should contain a supplementary factor in the right-hand
side to account for the contribution from the diagonal v'=y;
this factor is essentially expressed in our result (7-2).

The statement of Ku5ter and McCormick concerning the
ambiguity in the Poincaré-Bertrand formula is due to a
misinterpretation of the integrals occurring in this for-
mula. In the notation of Ref. 3 the meaning of the integral
over v in the right-hand side of Eq. (2B) when u' = pis
uniquely defined by the factor ‘;TZF(].L,M) representing the
contribution to the integral over p’ at the point u' =y, As
we demonstrated above this contribution is equal to
T°F (i, 1) (- ).

In conclusion we should like to make the following re-
marks.

The introduction of generalized functions in neutron
transport theory requires proper definitions and their
proper handling as functionals. Though the theorems may
be stated in the usual shorthand notation, proofs should
always be given with reference to the space of test-
functions.

The symbol T for a generalized function is preferred to
¢ since in mathematical literature the symbol ¢ is com-
monly used to denote a test-function,

The symbol P only denotes a meaningful operator if
placed before an integral sign. Therefore formulae like
(2A) and (2B) in Ref, 3 are mathematically senseless,

The same warning is appropriate to formulae (4) and (7)
in Ref, 2, where one silently passes from generalized func-
tions eD¥ in the left-hand side to generalized functions eD¥
in the right-hand side. Such ambiguities cause confusion
and should therefore be avoided.

To summarize we have given a rigorous proof that there
is only one consistent system of formulae in neutron
transport theory. It is the system that is currently used in
this field, following the work of Case et al.
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Comment to the Preceding Letter by Kaper

We appreciate the effort of Kaper to mathematically
justify what we hoped to convey in a heuristic manner. It is
indeed reassuring to see that his Eq. (7-3) follows from
our Eq. (3A), and that his derivation is closely related to
ours (so that it seems to the same extent arbitrary).

We admit not having explained one symbol which has
created doubt about the mathematical sense of the equa-
tions. Our [P stands for P or ¢ of other authors, whereas





