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The details of this calculation are presented elsewhere 
W. 

REFERENCES 

1. T . A . W E L T O N AND E . P . BLIZARD, Reactor Sci. Technol. 
2(2), 73 (1952) (classified). 

2. E. B. JOHNSON, Power calibration for BSR loading 33. 
ORNL-CF-57-11-30 (1957). 

8. D. R. OTIS, Lid tank shielding facility at the Oak Ridge 
National Laboratory, Part II , determination of the 
fission rate of the source plate. ORNL-2350 (1959). 

4. E. P. BLIZARD, Transformation from disc to point source 
geometry. ORNL-CF-52-3-219 (1952). 

5. E . P. BLIZARD, "Nuclear Radiation Shielding" (Harold 
Etherington, ed.), pp. 7-94. McGraw-Hill, New York, 
1958. 

6. A. D. MACKELLAR, Prediction of thermal-neutron fluxes 
near the bulk shielding reactor from lid tank shielding 
facility data. ORNL-CF-59-1-24 (1959). 

A . D . M A C K E L L A R 

Oak Ridge National Laboratory* 
Oak Ridge, Tennessee 

Received November 25, 1960 

* Operated by Union Carbide Corporation for the U. S. 
Atomic Energy Commission. 

Table I gives characteristics of lattices arbitrarily chosen 
for study. These are all 1.5% enriched uranium metal rods, 
0.3 in. in diameter, and separated by a distance, a, in a 
square lattice. In all cases 2 a o = 0 . 3 8 7 cm -1 and 2tro = 
0 . 3 9 3 cm - 1 for the fuel. Boiling light water with a 6 0 0 psig 
density, 0.8 (1 — a), is assumed to be the coolant, a is the 
void fraction. Lattices near the bottom of the table are 
unlikely in practical reactors, but are useful in this study. 
The choice of a Maxwellian spectrum at 0 . 0 4 5 ev, for all 
lattices, simplifies the study and does not affect the con-
clusions. 

Methods used to compute the fine structure in these cells 
having a constant source in the coolant are as follows: 

1. Monte Carlo (1). This is two dimensional, (xy), and 
it is necessary to approximate the fuel rod as a square with 
the corners removed. 

2. Amouyal's approximation (2). This uses cylindrical 
geometry diffusion theory in the coolant and transport 
theory in the fuel. 

3. Diffusion theory in cylindrical geometry (which gives 
the same result as diffusion theory in the equivalent one-
dimensional slab geometry). 

4. P3 in cylindrical geometry. 
5. Ss in cylindrical geometry. 
6. Si in cylindrical geometry. 
7. Ss using an equivalent one dimensional slab geometry. 
8. P3 using an equivalent one dimensional slab geometry. 

Failure of Neutron Transport Approximations 

in Small Cells in Cylindrical Geometry 

A common problem in reactor design is the calculation 
of the thermal-neutron flux fine structure in fuel element 
cells. When the cell dimensions become less than a mean 
free path, it has been popular to use Pn and Sn approxima-
tions to the Boltzman equation, rather than diffusion 
theory, Pi. However, it has been found that in cylindrical 
geometry, approximations such as P3, St, and S8, can in 
some instances be poorer than Pi. This is not in contradic-
tion to many successful comparisons of P3 with experiment. 
The latter have typically been loosely packed, room-
temperature lattices; the cases studied here are tightly 
packed lattices with a low-density coolant, as might be 
encountered in some power reactors. 

Regarding the Sn methods, these exist in two forms, the 
so-called SNG and the DSN (3) and both are examined here. 

In methods having an outer cell boundary which is 
cylindrical, the cell radius, rh as obtained from 

tp?-!2 = a2 (1) 
To obtain the half-thicknesses of the equivalent fuel and 
coolant slabs, 50 and 5i, from the fuel and cell radii, r0 and 
ri, the criteria 

f̂uel«</>fuel edge — C\ \ <j>(ue 1 edge • ̂ coolant — C 2 (2) 

can be applied to cylindrical and slab geometries using 
diffusion theory, requiring that Ci and C2 be the same in 
both geometries, with the approximate results: 

S v 1 (3) 

T A B L E I 

L A T T I C E CHARACTERISTICS 
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H20 cross sections, cm -1 
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Tables II and I I I give the results of these methods for 
selected lattices from Table I. The Pi results in Table I I I 
are the same as those of Table I I by virtue of the definition 
of slab equivalence. The meaning of the error assigned to 
the monte carlo results is that the band defined has a 95% 
chance of encompassing the true answer. If monte carlo is 
regarded as correct the following inferences can be made, 

(a) While possibly for larger lattice sizes (in terms of 
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TABLE I I 
R E S U L T S FOR THE DISADVANTAGE FACTOR, IN CYLINDRICAL GEOMETRY 

Disadvantage factor 

Lattice No. S t r 1 {n - ro) Monte Carlo 
(xy geometry) Amouyal Pi P 3 DSN-Ss SNG-S8 SNG-S4 

1 0.504 1.135 ± 0.031 1.170 1.051 1.165 1.242 1.233 1.214 
2 0.336 1.169 1.039 1.188 1.302 1.289 1.261 
3 0.278 1.155 1.036 1.207 1.291 1.276 1.276 
4 0.185 1.137 ± 0.012 1.159 1.030 1.265 1.386 1.364 1.373 
5 0.0926 1.169 1.023 1.440 1.625 1.666 
6 0.0185 1.161 ± 0.010 1.186 1.018 

Typical IBM-704 running 
time, min 40 (hand) (hand) 3 4 4 3 

TABLE I I I 
R E S U L T S FOR THE DISADVANTAGE FACTOR, <PI/<PO, IN SLAB 

G E O M E T R Y 

Disadvantage factor 

No. ^tr1 

DSN-S8 SNG-S8 Pz Pi 

1 .382 1.173 1.178 1.098 1.051 
2 .254 1.155 1.162 1.077 1.039 
3 .220 1.150 1.160 1.072 1.036 
4 .147 1.138 1.160 1.059 1.030 
5 .0734 1.121 1.186 1.046 1.023 
(j .0147 1.101 (program 1.018 

failed) 

Typical IBM-704 3 3 1 (hand) 
running time, 
min 

mean free paths) the P3 , &4, and Ss in cylindrical geometry 
are more nearly correct than diffusion theory, these approxi-
mations are worse than diffusion theory for small lattices. 

(b) AmouyaPs approximation and the use of DSN-S8 in 
an equivalent slab geometry are surprisingly close to monte 
carlo results over the entire range studied. 

(c) The DSN is to be preferred over the SNG, a t least 
in slab geometry. 

id) In the limit of a small Stri5i, the three reliable slab 
geometry methods (DSN, P3, and Pi) apparently converge 
on finite disadvantage factors equal to the max to average 
flux in the fuel. Monte Carlo also does this in xy geometry. 
However, in cylindrical geometry only the Pi and Amouyal 
approximation seem to give a reasonable result in this 
limit. 
These results are also supported by a number of other calcu-
lations not reported here. 

While it is not the purpose of this brief note to a t tempt 
an analysis of these effects, some comments might be made. 
It is suspected tha t the anomalously large values of the 
disadvantage factor in higher order approximations in 
cylindrical geometry may be a consequence of the boundary 
conditions at the cell boundary. Physically, these cell 
boundaries are flat, and the curvature artificially introduced 
may be a source of difficulty. Slab and xy geometries have 
no such artificiality. I t might be reasoned tha t an rQ cylin-
drical geometry P3, S4, or S8 could give reasonable results, if 
the outer boundary conditions would be those applied 
across flat faces at the t rue cell boundary, a la slab geome-
try, or xy geometry. 

I t is concluded tha t the use of P3, S4, or S& in cylindrical 
geometry may not always be the best approximation, 
especially if the mean free paths somewhat exceed the 
lattice sizes. Occasional comparison with bet ter behaved 
methods such as Monte Carlo, AmouyaPs approximation, 
and equivalent slabs, may be necessary in individual cases. 
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