
Letter to the Editor 

Improved Techniques of Analog and Digital 
Dynamic Compensation for Delayed 

Self-Powered Neutron Detectors 

I. INTRODUCTION 

This comment refers to a paper by Yusuf and Wehe.1 Af-
ter some critical remarks about this paper, an improved model 
of dynamic signal compensation is presented and illustrated by 
examples of analog and digital correction methods. 

It is possible to invert a dynamic (prompt jump response) 
system by transforming the output equation of the state equa-
tion system to the input. Then, the overall system corresponds 
to a static element. Following Brockett,2 the output equation of 
a non-prompt jump response system has to be differentiated un-
til the corresponding transformation to the input will be possi-
ble. But, the differentiation aggravates the noise gain of the 
inverse system. Furthermore, no static transfer is possible for 
the overall system because in practice, the differentiation can be 
done only by a DTI-lag. 

The physical model of the rhodium self-powered neutron 
detector (RSPND) has a prompt jump response. This capabil-
ity is abandoned by Yusuf and Wehe. Therefore, their method 
of analog and digital dynamic compensation is characterized by 
the disadvantages named above. Now, some solutions are pre-
sented based on the original prompt jump response system. 

II. STATE EQUATION SYSTEM OF A RHODIUM 
SELF-POWERED NEUTRON DETECTOR 

Referring to Yusuf and Wehe and neglecting the insignifi-
cant terms, the state equations are 
dNm(t) 

dt 

M 
dt 

= SmN0F(t) - lmNm(t) , (1) 

dNg(t) = 

i 
and 

= SgN0FU) + lmNm(t) - IgNg(t) dt , (2) 

/ ( / ) = KglgNg(t) + Kp(Sg + Sm)N0F(t) =Id + Ip , (3) 
where 

N0 = atomic density of 103Rh 
Ng = atomic density of 104Rh 
Nm = atomic density of 104mRh 
Sg = absorption cross section of 103Rh to produce 104Rh 

(S, = 139 b) 

Sm = absorption cross section of 103Rh to produce 104/nRh 
(Sm = 11 b) 

lg = decay constant of 104Rh (lg = 0.0165 s"1) 
lm = decay constant of 104mRh (lm = 0.002626 s"1) 
F = neutron flux 
/ = current 

Id = delayed component of / 
Ip = prompt component of / 

Kg = probability that a 104Rh decay leads to a current-
carrying electron 

Kp = probability that a 103 Rh capture leads directly to a 
current-carrying electron. 

The transfer function is 
/ W = M M o + KglglmSmN0 + K p ( S g + S M . 
F(s) s + L (s + L)(s + lm) 

III. ANALOG METHOD 

(4) 

Yusuf and Wehe simplify Eq. (4) by setting Kp = 0, and 
therefore, they abandon the prompt jump response of the sys-
tem. For the inversion of the model, they introduce an addi-
tional dynamic term, which at last represents the dynamics in 
the overall transfer function. The realization of the inverse 
model is done strenuously, with analog standard type electronic 
elements. 

We get the inverse transfer function from the transfer func-
tion of Eq. (4) without abandonment of the prompt jump re-
sponse: 
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Using the prompt current component Ip of Eq. (3), it follows 
F 
I 

1 
(6) 

Kp(Sg + Sm)No I 

Now, we introduce the parameter of the fraction of the 
steady-state prompt current component Ip0 of the steady-state 
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current I0. With Eq. (5), Eq. (6), and the second limit theorem 
of Laplacian transformation, we get — = lim s = (1 - M0)k I0 s-* o I(s) 

Ipo .. Ipls) M= -f^ = lim s - f — = To s-o I(s) 

and 

1 

1 + KgSm 
Kp(Sg + Sm) 

1 

(7) and 

k = 1 UaO 
1 - M 0 I0 

(14) 

KgSm M 
- 1 

Kp(Sg + Sm) (8) 

The parameter k can be determined by demanding a steady-
state output voltage Ua0, corresponding to a steady-state cur-
rent 70 and a steady-state fraction M0 of the prompt current 
component Ip. 

After comparison of the coefficients of Eq. (11), Eq. (12), 
and Eq. (14), we get (just like an outline order): 

For the design of an analog circuit, the representation of neu-
tron flux F in the form of voltage Ua is necessary: 

(9) I F I ' 
From Eq. (9) with the use Of Eqs. (5) and (6) and the parameter 
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In Fig. 1, an analog circuit is shown in which the transfer 
function 
Ua(s) 
I(s) 

-R0 (12) 
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C, = 

c2 = 

corresponds to Eq. (11). This circuit is suitable for the realiza-
tion of inverse detector kinetics. 

To determine the parameter k, we first estimate the static 
gain in Eq. (11): Using the static values Ua0, /<>, and the corre-
sponding parameter M0, it follows 
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Fig. 1. Analog compensation for delayed RSPND. 

If we have to vary the value M, only the adjustment of re-
sistance Ro is necessary [Eq. (IS)]. 

An example of the outline follows. For 70 = 2 x 10~6 A 
and M0 = 0.075, we demand Ua0 = 1 V. The fraction of 
prompt current should be adjustable in the interval 0.06 < M < 
0.1. By means of Eqs. (14) through (19), we get 

k = 0.541 MO 
R0 < 8.84 MO for M > 0.06 
R0 > 4.87 MQ for M < 0.1 
Ri = 0.296 MQ 
R2 = 3.10 MQ 
C, = 410 pF 
C2 = 246 ixF. 

IV. DIGITAL METHOD 

As mentioned, Yusuf and Wehe simplify Eqs. (1), (2), 
and (3) by setting Kp = 0. Their equation of inverse detector 



kinetics thus contains a term dl(t)/dt, by which the noise transfer 
of the inverse system could be injured considerably. Yusuf and 
Wehe do not give information about the numerical realiza-
tion of the inverse model. But, this is important for the judgment 
of computational speed and accuracy with regard to real-time 
processing. 

We transform the transfer function Eq. (4) without aban-
donment by reducing to partial fractions in 
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Using the parameter 

kd=-
1 

KgSmN0 
K ) ' 

it follows that 

1 
- ( M Kp(Sg + Sm)N0 
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kd 

(20) 

0.5 

(21) 

(22) 

(23) 

(24) 

On the conditions of equidistant sampling at times t = nTa 
(n = 0,1,2,...; Ta = sampling period) and rectangular approx-
imation of current I(t), and by means of the so-called Z trans-
formation, we get the result of pulse transfer function 

= 1 + A 1 
a z-z„ 

+ _ 
j + a s 
za + B 1 

h ) } 
Zb 

b z-Zb 
(26) 

where 

and 
za = e~aT' 

zb = e~bT" 
Now, we introduce the state variables x„ and xb in the second 
and the third terms in Eq. (26). Using Eq. (26), we obtain the 
recursive algorithm 

xa(n + 1) = zaxa(n) + (1 - za) - /(«) , a 
B 

xb(n + 1) = ZbXb(n) + (1 - zb) £ /(«) . 

and 

F(n) = ^-ljkd[Hn)+xa{n)+xb(n)] 

and for the steady state 

(27) 

(28) 

(29) 

and 

*«(0) = - 7(0) a 

*6(0) = ? m • b 

(25) 

An example of the outline follows. For M = 0.075 and 
T„ = 0.1 s, we get the constants 

a = 0.0028198 s"1 

b - 0.20488 s_1 

A = -0.000013116 s~! 

B = -0.18856 s"1 

za = 0.99972 
Zb = 0.97972 

and the recursive algorithm is 
xa(n + 1) = 0.99972xo(n) - 1.311 x 10"6/(n) , 
xb(n + 1) = 0.97972*6(fl) - 0.018664/(n) , 

and 
F(n) = 12.33 kd[I(n) + xa(n) + xb(n)] , 

with the initial values 
xa(0) = -0.004651/(0) 

and 
x„(0) = -0.920348/(0) . 

In practice, the parameter kd can be determined by Eq. (29) by 
scaling the measured steady-state current 1(0) to the known 
steady-state neutron flux F(0). 



V. SUMMARY AND DISCUSSION 

The analog circuit presented here contains only one active 
electronic element, which is responsible for the compensation 
of detector dynamics, the signal amplification and the current-
to-voltage transformation. This circuit can be considered as the 
minimum of effort. By means of this circuit, it is possible to 
measure the time-dependent neutron flux behavior without de-
lay and with high accuracy. The steady-state prompt fraction 
of the RSPND current is adjustable with the help of only one 
resistance. 

The given discrete algorithm includes no differentiation of 
detector current and thus has a good noise gain. These improved 
analog and digital dynamic compensation methods of RSPND 
were developed and used in German and Hungarian nuclear 
power plants with pressurized water reactors of Soviet VVER 
type.3,4 By means of many rhodium detectors and the named 
correction methods, the time- and space-dependent neutron flux 
behavior during power changes or reactivity perturbations was 
followed to estimate important reactivity coefficients like dif-
ferential control rod worths or power coefficient. Furthermore, 
both the developed compensation principles and the reactor-
dynamic perturbation method allow the estimation of the very 

important detector value of the steady-state prompt fraction of 
RSPND current by an experimental process analysis. 
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