

Fukushima and the Role of Past Severe Accident Research

Eric P. Loewen, Ph.D. President American Nuclear Society

City College of New York Student Section of the American Nuclear Society October 13, 2011

Yamadamachi, March 11, 2011

Associated Press

Fukushima – Daiichi, March 10 2011

American Nuclear Society

History of Probabilistic Risk Assessments of Severe Reactor Accidents

THEORETICAL POSSIBILITIES AND CONSEQUENCES OF

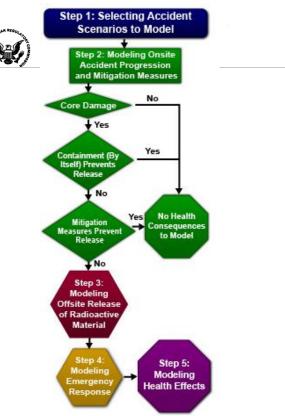
MAJOR ACCIDENTS IN LARGE NUCLEAR POWER PLANTS

A Study of Possible Consequences if Certain Assumed Accidents,

Theoretically Possible but Highly Improbable, W.

in Large Nuclear Power Plants

Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants


Q

WASH-1400 (NUREG 75/014)

Final Summary Report

U.S. Nuclear Regulatory Commission

Office of Nuclear Regulatory Research

UNITED STATES ATOMIC ENERGY COMMISS

₩ASH-740

March 1957

REACTOR SAFETY STUDY

AN ASSESSMENT OF ACCIDENT RISKS IN U.S. COMMERCIAL

NUCLEAR POWER PLANTS

U.S. NUCLEAR REGULATORY COMMISSION OCTOBER 1975

U.S. Severe Accident Documents

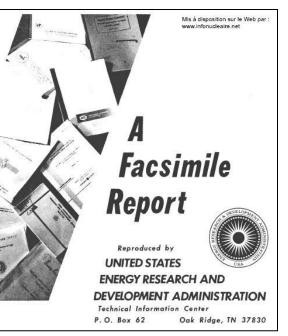
WASH 740, published 1957

THEORETICAL POSSIBILITIES AND CONSERJENCES OF

MAJOR ACCIDENTS IN LARGE NUCLEAR POWER PLANTS

A Study of Possible Consequences if Certain Assumed Accidents,

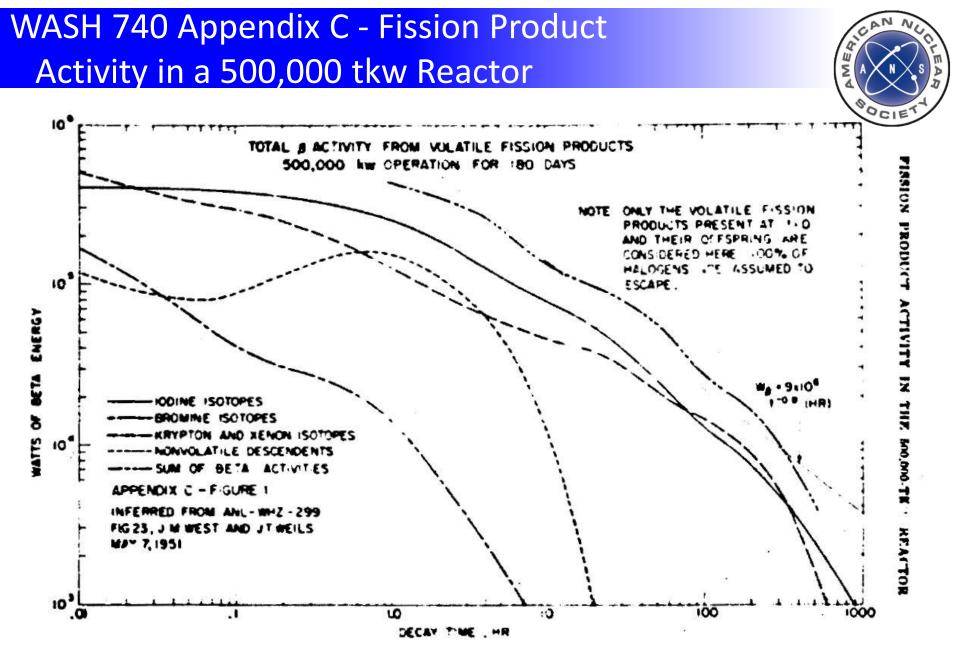
Theoretically Possible but Highly Improbable, Were to Occur


in Large Nuclear Power Plants

WASE1-7+0

UNITED STATES ATOMIC ENERGY COMMISSION

March 1957

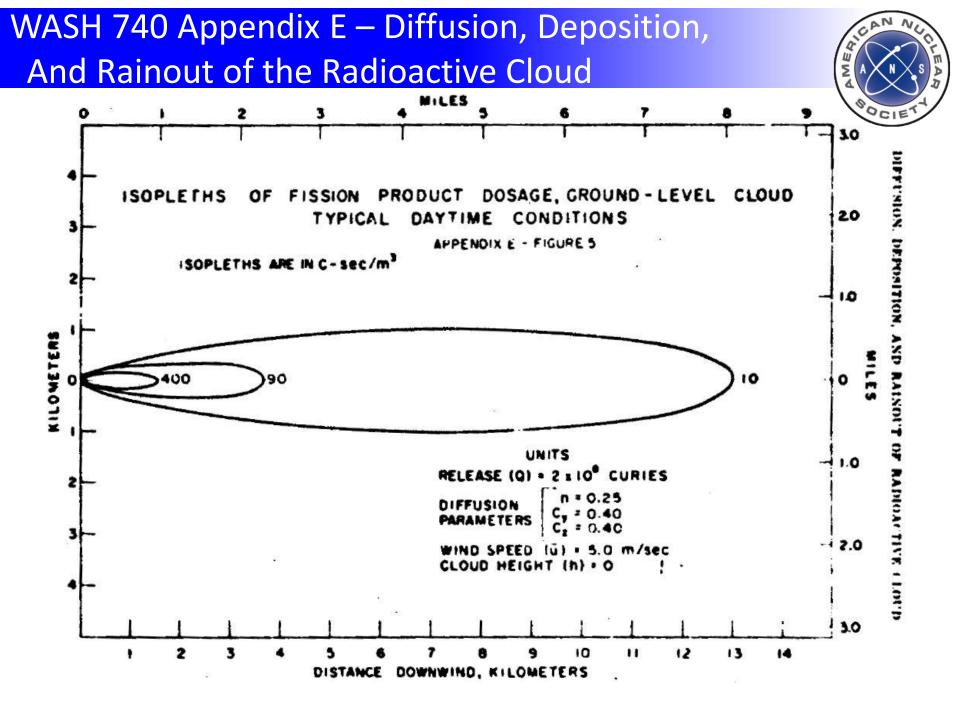

WASH 740 Table of Contents

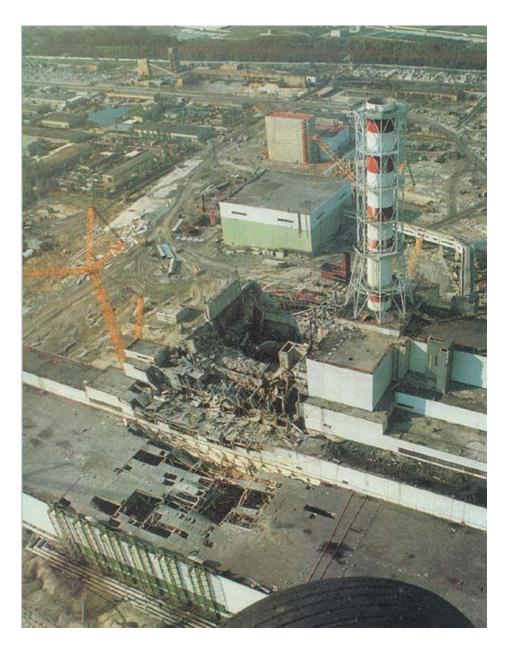
AN NUCCHEAR BOCIETI


Table of Contents

Page

Foreword	Appendix E-Diffusion, Deposition, and Rainout of the Radioactive Cloud 53
Letter of Transmittal to JCAE	
Introduction	1 / ppendix F-A Method for Calculating the Number of People That Could Be Affected by a Fission Product
Part I-The Probability of Catastrophic Reactor Accidents	3 Release 81
Part II-Assumptions Used in the Damage Studies	9 Appendix G-Basic Assumptions in Calculating Potential Loanes 88
Part III-Estimated Consequences of the Assumed Reactor Accidents	15 Appendix H-Consequences of Gamma Radiation from a 100 Percent Release of the Fission Products into the
Part IV-Appendices:	Containment She'l
Appendix A-The Net ire and Extent of a Fission Product Release from a Power Reactor	28 Appendix I-Personal and Property Damage Resulting from Release of Fission Products from a 500.000 thw
Appendix B-Description of Reactor and Site	김 가격 가슴이 가지 않는 것이라. 그렇게 가지 않는 것이 가지 않는 것이 아파 그 가지 않는 것이 가지?
Appendix C-Fission Product Activity in the 500,000-thw Reactor	35
Appendix D-Effects of Fission Product Release on Humans and Land Use	39


WASH 740 Appendix D – Effects of Fission Product Release on Humans And Land Use



For Strontium-90: maximum permissible body dosage maintained over a "working lifetime... the average amount over 40 years would be..."

$$\frac{1}{40} \int_{0}^{40} \exp\left(-\frac{0.693}{6}t\right) dt = \frac{1}{40}$$

- $\frac{6}{0.693} \exp\left(-\frac{0.693}{6}t\right) dt = \frac{1}{40}$
- $\left[\frac{-6}{(0.693 + 40)}\right]_{0}^{40}$
- $\left[\frac{-6}{(1-6)}\left(0.693 + 40\right)\right] (e^{+4} - 1)$
(1 1.6) $(1 - e^{+4}) = 0.21$

"... of that originally present"

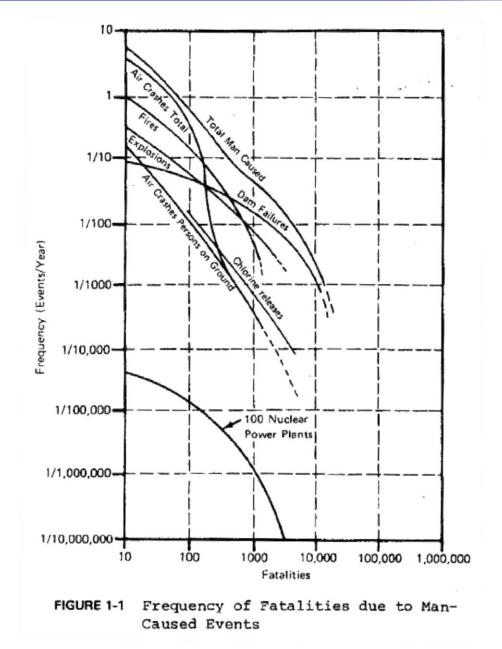
Chernobyl, May 1986

WASH 1400, published 1975

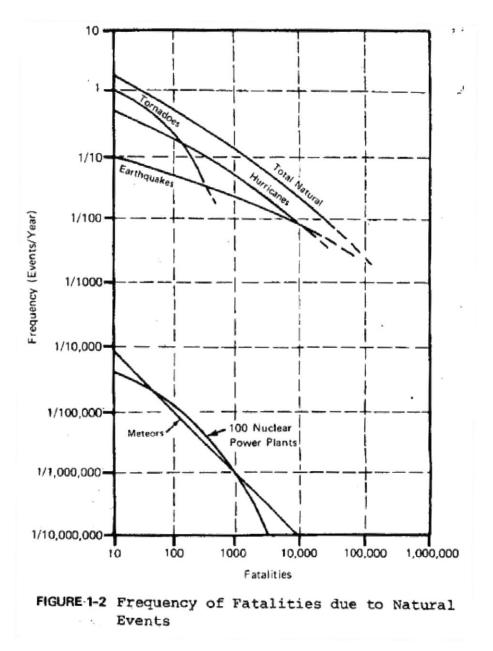
(NUREG 75/014)

REACTOR SAFETY STUDY

AN ASSESSMENT OF ACCIDENT RISKS IN U.S. COMMERCIAL NUCLEAR POWER PLANTS

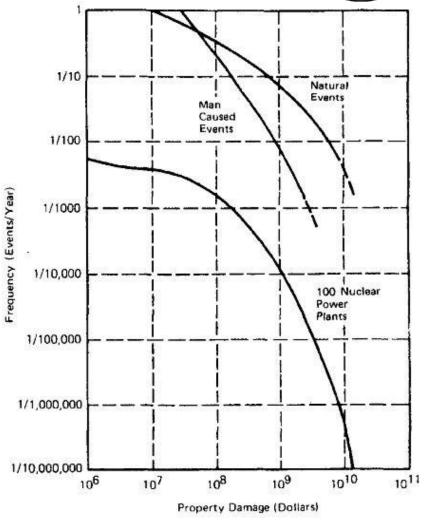

EXECUTIVE SUMMARY

Professor Rasmussen


U.S. NUCLEAR REGULATORY COMMISSION OCTOBER 1975

Frequency of Fatalities due to Man-Caused Events

Frequency of Fatalities due to Natural Events



WASH 1400

FIGURE 1-3 Frequency of Property Damage due to Natural and Man-Caused Events

- Notes: 1. Property damage due to auto accidents is not included because data are not available for low probability events. Auto accidents cause about \$15 billion damage each year.
 - Approximate uncertainties for nuclear events are estimated to be represented by factors of 1/5 and 2 on consequence magnitudes and by factors of 1/5 and 5 on probabilities.
 - For natural and man caused occurrences the uncertainty in probability of largest recorded consequence magnitude is estimated to be represented by factors of 1/20 and 5. Smaller magnitudes have less uncertainty.

TABLE 1-1 AVERAGE RISK OF FATALITY BY VARIOUS CAUSES

Accident Type	Total Number	Individual Chance per Year	
Motor Vehicle	55,791	1 in 4,000	
Falls	17,827	1 in 10,000	
Fires and Hot Substances	7,451	1 in 25,000	
Drowning	6,181	1 in 30,000	
Firearms	2,309	1 in 100,000	
Air Travel	1,778	l in 100,000	
Falling Objects	1,271	l in 160,000	
Electrocution	1,148	1 in 160,000	
Lightning .	160	1 in 2,000,000	
Tornadoes	91	1 in 2,500,000	
Hurricanes	93	l in 2,500,000	
All Accidents	111,992	l in 1,600	
Nuclear Reactor Accidents			
(100 plants)	<u>-</u> 3	1 in 5,000,000,000	

FIGURE 5-3 Probability Distribution for Early Fatalities per Reactor Year

Fatalities

Probability Distribution for Early Fatalities

per Reactor Year

WASH 1400

- 1. Who did this study and how much effort was involved?
- 2. What kind of nuclear power plants are covered by the study?
- 3. Can a nuclear power plant explode like an atom bomb?
- 4. How is risk defined?
- 5. What causes the risks associated with nuclear power plant accidents?
- 6. How can radioactivity be released?
- 7. How might a core melt accident occur?
- 8. What features are provided in reactors to cope with a core melt accident?
- 9. How might the Loss-of-Coolant Accident lead to a core melt?
- 10. How might a reactor transient lead to a core melt?
- 11. How likely is a core melt accident?
- 12. What is the nature of the health effects that a core melt accident might produce?
- 13. What are the most likely consequences of a core melt accident?
- 14. How does average annual risk from nuclear accidents compare to other common risks?
- 15. What is the number of fatalities and injuries expected as a result of a core melt accident?
- 16. What is the magnitude of the latent, or long-term, health effects?
- 17. What type of property damage might a core melt accident produce?
- 18. What would be the cost of the consequences of a core melt accident?
- 19. What is the chance of a reactor meltdown in year 2000 if 1000 reactors are operating?
- 20. How do we know that the study has included all accidents in the analysis?
- 21. What techniques were used in performing the study?

NUREG-1150 Vol. 1

Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants

Final Summary Report

U.S. Nuclear Regulatory Commission

Office of Nuclear Regulatory Research

Five U.S. Nuclear Power Plants Evaluted in NUREG-1150

Table 1: Five U.S. Nuclear Power Plants Evaluated in NUREG-1150

Name	Туре	Containment	Vendor	Constructor	Operation
Surry (2 Units)	PWR (3 loops)	Dry-sub	Westinghouse	Stone & Webster	1972-present
	788MWe	atmospheric			
Peach Bottom	BWR-4	Mark I	GE	Bechtel	1974-present
	1065MWe				
Sequoyah	PWR (4 loops)	Ice condenser	Westinghouse	TVA	1981-present
(2 units)	1148 MWe	containment			
Grand Gulf	BWR-6	Mark III	GE	Bechtel	1985-present
	1,250MWe				
Zion (2 units)	PWR (4 loops)	Prestressed	Westinghouse	Sargent & Lundy	1973-1998
	1,100MWe	concrete, steel lined			
		dry containment			

- Assess Possible BWR & PWR Severe Accidents
- Assess Public Risks
- Update 1975 WASH-1400 Risk Assessment Process
- Identify Plant-Specific Risks
- Summarize the Risk Analyses

NUREG-1150

Table 2: NUREG-1150 Key Plant Attributes

Attribute	Surry (Ch3)	Peach Bottom (Ch4)	Sequoyah (Ch5)	Grand Gulf (Ch6)	Zion (Ch7)
Plant type	PWR (3 loop)	BWR 4	PWR (4 loop)	BWR-6	PWR (4 loop)
Battery time	2 hrs	10 – 12 hrs	2 hrs	12 hrs	(not given)
Mean core damage frequency per reactor year	3 E-5	3 E-6	4 E-5	3 E-6	2 E-4
Range of time to core damage	5 min to 8 hours	15 min to 13 hours	Not provided	20 min to 12 hours	Not provided
Maximum early fatalities	1,000	3	3,000	30	10,000

NRC Guidance For Use of NUREG-1150

- Examination of Accidents
- Accident Management Strategies
- Improving Containment
- Evaluating Plant Operational Features
- Strategies for Implementing Safety Goals
- Emergency Planning
- Prioritizing Research Projects
- Prioritizing Generic Issues
- Applying PRA to Routine Inspections

Comparison of Early Fatality Risks

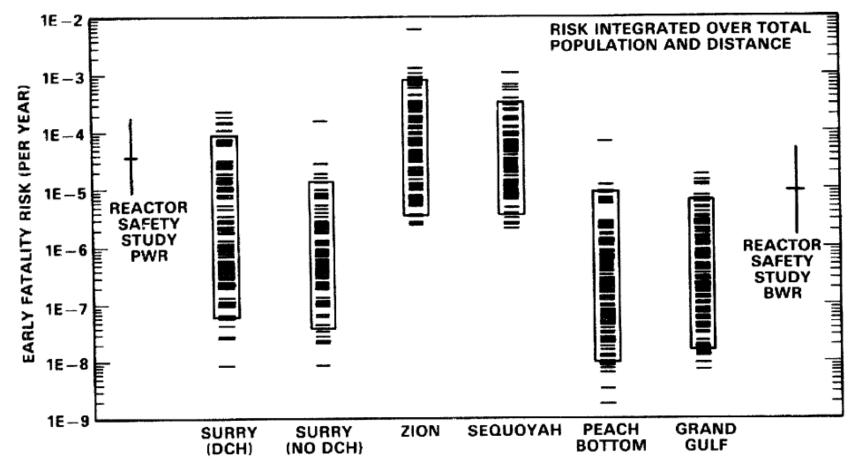


Figure ES.3 Comparison of early fatality risks

Probability of One or More Early Fatalities

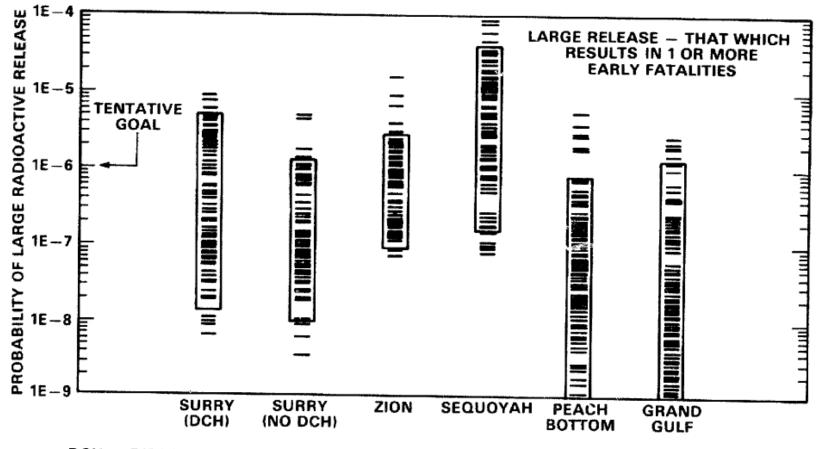
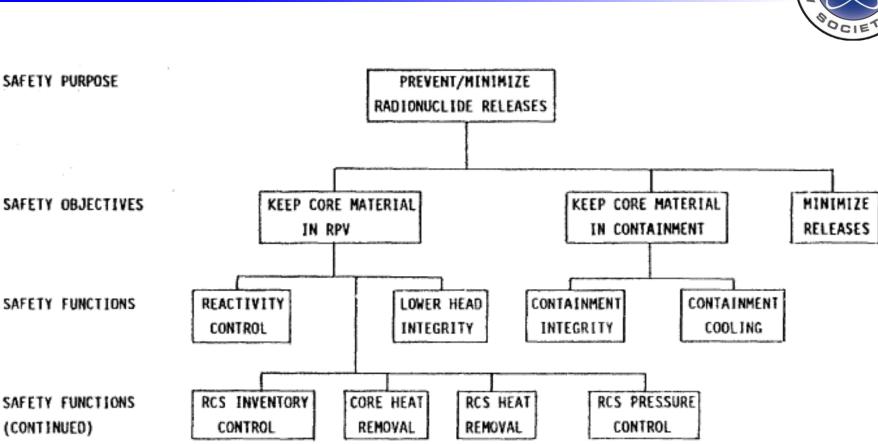


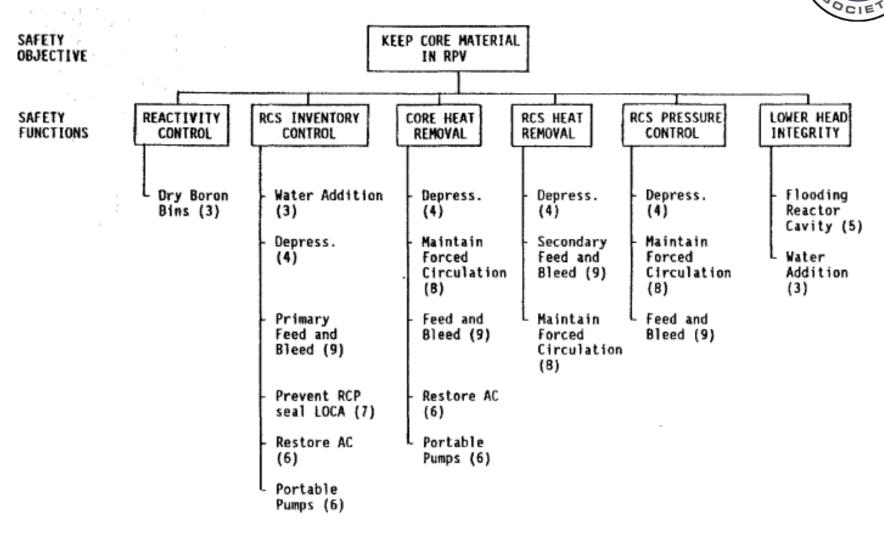
Figure ES.7 Probability of one or more early fatalities



Identification and Evaluation Of PWR In-Vessel Severe Accident Management Strategies (NUREG-5856)

Executive Summary	vii
Acknowledgments	ix
1 Introduction	1.1
1.1 Organization of This Report	1.3
2 Critical Severe Accident Sequences and EPG Coverage	2.1
 2.1 Methodology and Information Resources 2.2 Description of Plants 2.3 Identification of Critical Sequences 	2.1 2.1 2.2
3 Water Addition to the Reactor Pressure Vessel	3.1
 3.1 Description of the Strategy 3.2 Core Fragmentation and Hydrogen Generation 3.3 Recriticality Issues 3.4 Plant-specific Implementation 3.5 Evaluation of the Strategy 	3.1 3.1 3.2 3.3
4 Depressurization of the Primary System	4.1
 4.1 Description of the Strategy 4.2 Use in Steam Generator Tube Rupture and Interfacing System LOCAs 4.3 Natural Circulation-Induced Failure of the RCS 4.4 Trade-Offs Between FCI and DCH 4.5 Information Needs 4.6 Plant-Specific Implementation 4.7 Evaluation of the Strategy 	4.1 4.2 4.2 4.3 4.3 4.5
5 Flooding Reactor Cavity to Cover RPV Lower Head	5.1
 5.1 Description of the Strategy 5.2 Plant-Specific Implementation 5.3 Evaluation of the Strategy 6 Restoration of AC Power and Provision of Portable Pumping Capacity 	5.1 5.1 5.1
6.1 Restoration of AC Power 6.2 Plant-Specific Implementation 6.3 Evaluation of the Strategy	6.1 6.2 6.2

Reactor Safety Top Level Logic Tree


CAN

a

ME

FIGURE 1.1. Reactor Safety Top Level Logic Tree

Classification of Proposed Strategies

CAN

MEA

FIGURE 1.2. Classification of Proposed Strategies

Identification and Assessment of BWR In-Vessel Severe Accident Mitigation Strategies (NUREG-5869)

IDENTIFICATION AND ASSESSMENT OF BWR IN-VESSEL SEVERE ACCIDENT MITIGATION STRATEGIES

Stephen A. Hodge T. S. Kress

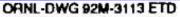
J. C. Cleveland M. Petek

Oak Ridge National Laboratory Oak Ridge, Tennessee 37831

The submitted manuscript has been authored b a contractor of the U.S. Government under contract No. DE-AC05-84OR21400. Accordin the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes

NUREG-5869 Table of Contents

Contents


CAN NUC	
Z A N S A	1
	/
OCIET	

Page

Abstract	. iii
List of Figures	. ix
List of Tables	. xili
Nomenclature	. xvii
Acknowledgment	. xix
Executive Summary	. xxi
1 Introduction	. 1
1.1 Report Outline	. 1
1.2 Selection of Units for Text	. 3
2 Dominant BWR Severe Accident Sequences	. 5
2.1 Results from PRA	. 5
2.2 Description of Accident Progression	. 5
2.2.1 Station Blackout	. 6
2.2.1.1 Event Sequence for Short-Term Station Blackout	. 7
2.2.1.2 Event Sequence for Long-Term Station Blackout	
2.2.2 ATWS	. 11
2.3 Plant-Specific Considerations	. 13

NUREG-5869

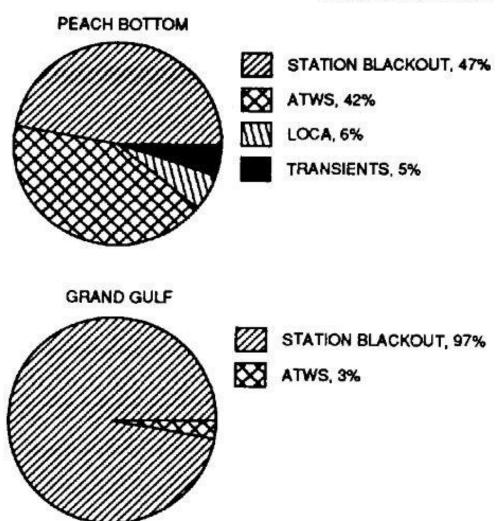


Figure 2.1 Dominant accident sequence contributors: station blackout and ATWS Station Blackout Involving Loss of AC Electrical Power

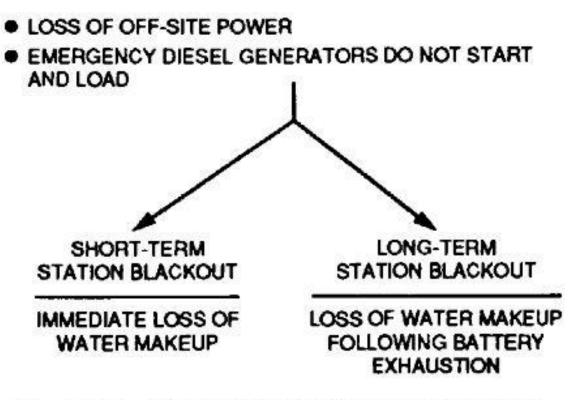


Figure 2.2 Station blackout involving loss of ac electrical power

Source-Range Detector Drive Unit And Locations of Detector

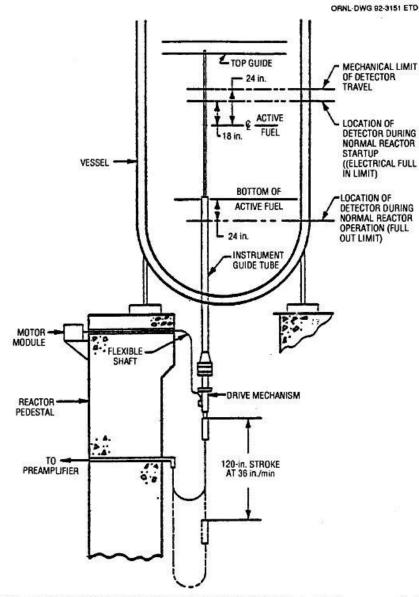
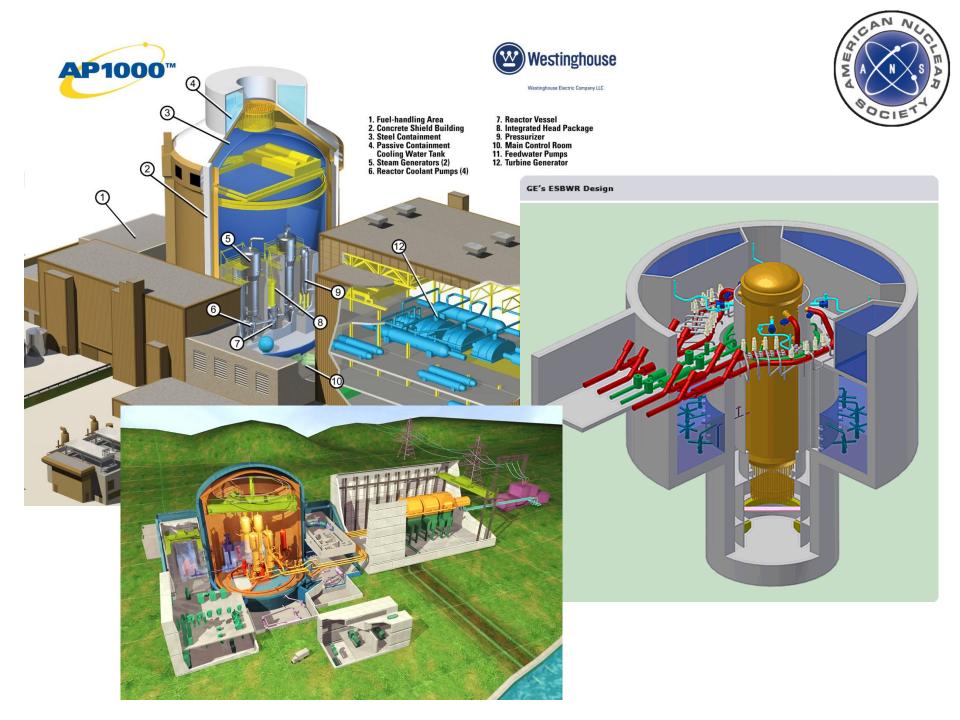


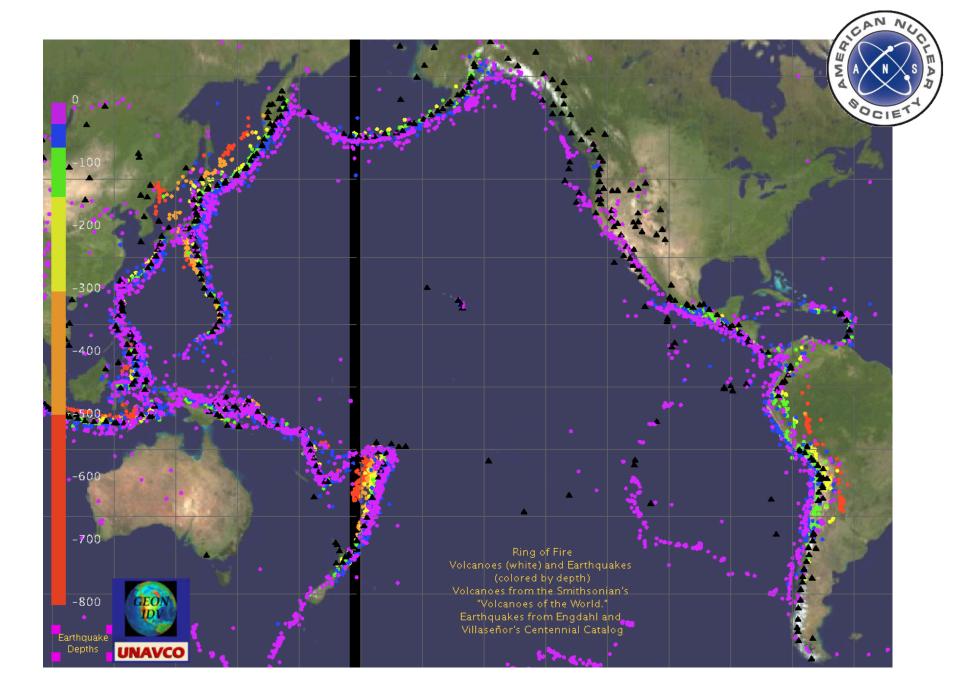
Figure 7.1 Source-range detector drive unit and locations of detector for startup and during power operation (from Browns Ferry Nuclear Plant Hot License Training Program)

Courage to go forward


Fukushima Prefecture

Georgia, U.S.A. April 2011

Fukushima-Daiichi, April 2011


MEA

OCIET

Pori, Finland 2010 Guardian, UK

All societies need stable, abundant energy

